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. l‘ ’ FOREWORD
1 This final report describes the research performed during the past year on
H adaptive antenna techniques. The rescarch included new work on the topic of
signal cancellation in adaptive arrays as well as a further investigation of

I power-separation techniques that was begun under a prior contract (N00019--

78-C-0278) with the Naval Air Systems Command. The report has been divided
»- into two parts to reflect the different thrusts of the new and the continuing
- investigations.

Part 1 of the report is concerned with the phenomenon of signal cancella-
tion that occurs in standard adaptive beamformers when the environment
demands rapid adaptation. The signal-cancellation eflect that results from
v jammer/signal interaction with the adaptive beamformer is described and is
likened to the notch-filtering eflfect that ovccurs in much sirnple adaptive noise

cancelling systems. Two different teclhiniques that are currently being pursued

to alleviate signal cancellation are described, and simulation results are
presented that indicate significant peformance improvement over conventional

v becamformers.

£t - ——— g 2 n

Part 11 is based on a doctoral dissertation by T. Saxe and represents a

refinement of earlier work vn adaptive power separators. This part discusses

;,, the design of adaptive power separators for discriminating between powerful
.- jammer signals and a weaker desired signal. Three different single-channel,
‘-

low-power-pass adaptive separators are analyzed. Each structure consists of a

power-spectrum estimator, a filter designer that analyzes the power spectrum

and designs filters that reject frequencies where the spectral estimate exceeds

a se!~cled. threshold, and a filler that actually processes the input to reject

poverful spectral components.
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PART I

JAMMING OF ADAPTIVE ARRAYS BY SIGNAL CANCELLATION:

THE PHENOMENON AND TWO REMEDIES

TPy

B. Widrow, K. Duvall, R. Gooch, and W. Newman
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I. INTRODUCTION

S V. Lo .
Adaptive antennas have been under development in various forms during
the past two decades or so. Although adaptive antennas have only been used in
small numbers thus far, they have proven themselves capable of rejecting jam-
ming signals to an ext:ent that is unprecedented. Most high performance radar
and cornmunications systems being designed to work in jamming environments
currently incorporate adaptive antennas. The development of spread spectrum
techniques éimultaneously with adaptive ant:ennas provides a formidable set of
technologies for jam resistant systems. These technologies are compatible and
are frequently used in the same system. An adaptive antenna is relied upon to
attenuate strong j'a.mming signals as they appear at the receiver "front end.”
Spread spectrum techniques are used to neutralize large numbers of weak jam-

mers that may not be eliminated totally by the adaptive antenna.

The question arises, are adaptive antennas susceptible to certain jam-
mers? Or, staled differently, can jammers be devised specifically for use
against adaptive antennas? Under certain circumstances, the answer to this
question is yes. This paper is concerned with jamming signals that could defeat
or partially defeat known adaptive antenna algorithms. The existence of jam-
mers that could trouble known adaptive arrays motivates the development of
new adaptive signal processing and array processing algorithms, two of which

are proposed herein.
The goals of this paper are threefold:

. (a) Examine the signal cancellation phenomenon in adaptive beamform-
ers.
(b) Formulate approaches toward the elirnination of the adaptive signal

cancellation phenomenon, based on the work of K. Duvall.




i I (c) Introduce spatial dither algorithms for the purposes of combating sig-
v:- nal cancellation and modulating "smart" jammer signals at the receiv-
- ing array.
.- II. SIGNAL CANCELLATION JAMMING
:' Any adaptive beamformer, either the Howells-Applebaum sidelobe canceller
) (1.2], Widrow's pilot signal beamformer [3)], Griflith's beamnformer [4], Frost's |
.- beamformer [5], Zahm's beamformer [6] or combinations and variations of f
= these, is susceptible to attack by a simple jammer which may be band-pass
v noise, or a sinusoid, or a sum of sinusoids suitably spaced in frequency. The
': interaction of such jammers with the desired signal in these adaptive algo- _1
) rithms can cause cancellation of signal components, even when these adaptive :‘
.. beamformers are working perfectly. f
o To understand how this comes about, consider the Frost beamformer which ‘5
o functions in the following manner. A beam is formed toward a user selected
N "look direction.” The receiving sensitivity in this direction is then constrained.
A typical constraint is one that forces the array to have a unit gain magnitude
and zero phase over a selected passband of frequencies in the look direction.
The beamformer is adapted (its weights are varied) to minimize its output
), ( power, subject to the constraint which sustains the beam in the look direction.
- ) Adaptation subject to the constraint causes the array to accept a signal with
. gain one if this'signal arrives from the look direction, and causes any other sig-
. nals, jamrmer signals for example, to be rejected as well as possible (in the
’ ) minimum total power sense) so long as they do not arrive from the look direc-
. tion. Other adaptive beamformers behave more or less like the Frost beam-
, E ! former except that the Frost algorithm imposes a "hard” constraint on the sig-
. nal gain i;x the look direction. The Widrow and Griffiths beamformers create
I - "soft"” constraints in this direction. The Howells-Applebaum and Zahm
L ..
R . -
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beamformers apply soft constraints omnidirectionally rather than along a look

direction.

Suppose that the Frost beamformer has a sinusoidal input signal arriving
from the look direction. This signal should appear at the beamf{ormer output,
going through a unit gain. Now suppose a jammer is turned on, a very strong
sinusoidal jammer at the same frequency as the signal and arriving off the look
direction. The jamming sinusoid would normally be rejected by the adaptive

beamformer, if the signal were not present. But with signal present, minimiz-

ing the total output power will cause the jammer to be admitted with just the

right magnitude and phase to cancel the sinusoidal signal. Thus, the signal

sinusoid is admitted with a gain of one. On the other hand, just a trickle of the
powerful jammer sinusoid is admitted to perfectly cancel the signal sinusoid
and produce a net output of zero. The output power is minimized and the con-
straint is preserved, as it should be with a perfectly working Frost beamformer.
But the result is loss of the signal. This amounts to jamming by signal cancel-

lation, rather than joamming by overwhelming the signal with interference.

If the input signal in the look direction is broadband rather than sinusoidal
and the jammer is sinusoidal, the adaptive algorithm will modulate the
sinusoidal jammer in such a manner that it will cancel some signal components
at the jammer frequency and at neighboring frequencies. If the jammer signal
contains a sum of sinusoids at spaced frequencies within the passbands, the
output signal spectrum will be notched at each of the jammer frequencies.
This phcnomenon could be troublesome for bandpass and spread spectrum com-

.
munications.

This signal cancellation phenomenon has been observed and analyzed in

the context of simple adaptive noise cancelling systems, much simpler systems

than adaptive beamformers. A brief discussion and analysis of adaptive noise
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cancelling follows.

III. ADAPTIVE NOISE CANCELLING

An adaptive noise canceller is shown in Fig. 1. In the terminology of that
field, the "primary input” contains a useful signal s, plus interference n,. The
“reference input” is separately obtained in practical syst'ems. It contains
interference n,, related to that of the primary input. The relationship between
the two interferences is generally unknown a priori. The adaptive filter has the
job of shaping the reference interference to replicate (in the least squared
error sense) the primary interference so that subtraction will remove the
interference from the primary input and thereby deliver a much more useful
output. It has been shown in [7] that an adaptive filter minimizing mean
squared error, minimizes output power of the system of Fig. 1. This causes the
system output to be a best least squares estimate of the useful signal s. The
Howells-Applebaum sidelobe canceller is more complicated than this in several
ways (useful signals and jammer signals appear at both primary and reference
inputs; spatial, i.e. array, processing is also involved), but works basi'cally on

the cancelling principle described above.

If the reference input is a sinusoid, as shown in Fig. 2, then the signal flow
path from primary input to the output behaves like a sharp, linear, time-
invariant notch filter. When first discovered, this was a surprise because the
adaptive filter itself is intrinsically nonlinear and time variable. An analysis, by
John Glover of the notch filter eflect was presented in a 1975 Proceedings of the
IEEE paper by Widrow, et al, on the subject of adaptive noise cancelling [7]. A
more detailed analysis is contained in Glover’s Ph.D. thesis entitled "Adaptive
Noise Cancelling of Sinusoidal Interferences”, Department of Electrical
Engineering, Stanford University, 1975 [8]). A published work based on Glover's

thesis has since appeared [9]. This work treats both single and multiple notch
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cases. Analysis of the simplest case, a single notch created by a two weight

adaptive filter, is presented next.

IV. AN ADAPTIVE NOTCH FILTER

In this section, an analysis of the notch filter effect of the adaptive noise
canceller, is presented. This analysis deals with the formation of a notch at a
single frequency. Analytical and experimental resulls show, however, that if
more than one frequency is present in the reference input, a notch for each
frequency will be formed.

Figure 2 shows an adaptive noise canceller with two adaptive weights. The
primary input is assummed to be an arbitrary signal--stochastic, deterministie,
periodic, transient, ete. The reference input is assumed to be a pure cosine
wave C cos(wot+¢). The primary and reference inputs are sampled at the fre-
quency 1 = 2n/T rad/s. The réference input is samplcd directly, giving zy4, and
after undergoing a 90° phase shift, it is sampled, giving ;. The samplers are
synchronous and strobe at ¢ = 0, T, 27, etc.

A transfer function for the noise canceller of Fig. 2 may be obtained by
analyzing signal propagation from the primary input to the system output.*
Weight updating in the system is carried out according to the LMS algorithm

[10,11]}:

Wigey = Wyy + 2[‘6}11’

- Wojey = Waj + 2UE; Ty, (1)

L
where the subscripts indicate the time index and u is a constant controlling the

rate of adaptation. Refering to Fig. 3, the sampled reference inputs are

't is not obvious, from inspection of Fig. 2, that a transfer function for this propzgation
path in fact exists. Itz existence is shown, however, by the subsequent analysis.
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C cos(w,jT +yp) . (2)

:lj

and

zz; = C sin(w,jT +¢) . (3)

The first step in the analysis is to obtain the isolated impulse response
from the error &, point C, to the filter output, point G, with the feedback loop
from point G to point B broken. Let an impulse of amplitude « be applied at

point C at discrete timme j = k; that is,
g5 = ad(j—k) (4)

The 6(j —k) is a Kronecker delta function, defined as

6(j-k) = 1, for j :'-.Ic (5)
0, otherwise .

The impulse causes a response at point D of

aC cos{a kT +p), for j =k - (8)
0, otherwise,

E4%yy = l
which is the input impulse scaled in amplitude by the instantaneous value of
zy; at j = k. The signal flow path from point D to point E is that of a digital
integrator with transfer function 2u/(z—-1) and impulse response 2uu(j-1).
where w(j) is the discrete unit step function

u(j) = 0, for ] <0 (?)
1, for 7 2 0.

Convolving 2uu (j—1) with £4z,; yields a response at point E of
- wyy = 2ual cos(w,kT +p), (8)
where j 2k + 1. When the scaled and delayed step function is multiplied by

74, the response at point F is obtained as

yiy = 2paC? cos(w,jT+p) cos(wkT+9) . (9)
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where j 2 k + 1. The corresponding response at point J, obtained in a similar

manner, is
vey = 2uaC? sin(w,jT +¢) sin(wkT +9p), (10)

where j 2 k + 1. Combining (9) and (10) yields the response at the filter out-

put, point G:

i

24.aC? cos(w, T(j—k))
2uaC?u(j—k-1) cos{w, T(j-k)). (11)

.

Note that (11) is a function only of (j—k) and is thus a time invariant impulse

Yzy

i

response, proportional to the input impulse.
A linear transfer function for the noise canceller may now be derived in
the following manner. If the time k is set equal to zero, the unit impulse

response of the linear time-invariant signal-flow path from point C to point G is
v = 2uC%u(j-1) cos(w,iT) (12)
and the transfer function of this path is

z(z — cosw,T)
¢ = 2uC? -1
(z) = 2u z?% ~ 2zcosw, T + 1

_ che(z cos w,T—1) . (13)
z“ -2z cosw,T +1

This function can be expressed in terms of a radian sampling frequency
1 =2n/T as

2uC?z cos(2new, 1) ~ 1]
z2 - 2z cos(2nwofI"!) + 1

C(z) = (14)

.
If the feedback loop from point G to point B is now closed, the transfer function
F(z) from the primary input, point A, to the noise canceller output, point C, can

be obtained from the feedback formula:

2% - 2z cos(2mw,N"Y) + 1

I . 15
2?2 - 2(1-uC?z cos(2nw,07') + 1 ~ 2uC? (15)

H(z) =

3
’?
%
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Equation (15) shows that the noise canceller with a cosine reference input
has the properties of a notch filter at the reference frequency w, along the sig-
nal flow path from primary input to output. The zeros of the transfer function

arec located in the Z plane at

= exp (+i2mw,071) (18)

“and are precisely on the unit circle at angles of +2nw,1"! rad. The poles are

located at

z = (1~uC?)cos(2nw, ") +i[(1-2uC?) ~ (1-pC¥)cos®(2ruw, N2 . (17)

The poles are inside the unit circle at a radial distance (1 — 2uC?)? | approxi-

mately equal to 1 ~ uC?, from the origin at angles of
tarc cos[(1-pC2)(1~-2uC?) V2 cos(2rnun~1)] .

For slow adaptation (that is, small values of £C2) these angles depend on the

factor

1-uC%  _ [1 - 2uC? + 12C*

12
(1-2uc?)l? 1 - 2uC? '

(1...#2(;44. ...)1ﬂ

1- %;ﬁc“ (18)

which differs only slightly from a value of one. The result is that, in practical

instances, the angles of the poles are almost identical to those of the zeros.

The location of the poles and zeros and the magnitude of the transfer func-
tion in terms of frequency are shown in Fig. 4. Since the zeros lie on the unit
circle, the depth of the notch in the transfer function is infinite at the fre-
quency w = . The sharpness of the notch is detemined by the closeness of

the poles to the zeros. Corresponding poles and 2eros are separated by a dis-




tance approximately equal to €% The arc length along the unit circle (cen-
tered at the position of a zero) spanning the distance between half-power points

is approximately 2uC2 This length corresponds to a notch bandwidth of

ucAQ/n
2uC?F Hz, (19)

Bw)

where F is the sampling frequency in Hz. The Q of the notch is determined by

the ratio of the center frequency to the bandwidth.

g = -2l (20)

The time constant of the mean square error "learning curve” for the LMS

algorithm has been shown to be [8,9]

- .
Tmse = i race B iterations, (21)

where R is the covariance matrix of the inputs to the weights, and n is the
number of weights. Formula (21) applies when the eigenvalues are all equal.
This is the case for the system of Fig. 2. Multiplying by the sampling period T,

the time constant is expressed in seconds of real time as

T = IL—T—-‘- sec. . (22)

' mse

For the two-weight adaptive filter of Fig. 2,

i

1n2, 1,
= + =
trace R > c > c
= C2. (23)
This is the sum of the power into the weights. Combining equations (23), (22),

and (19) yields

(BW) = —— Haz. (24)

> Tmse

Thus, the bandwidth of the notch is the reciprocal of the time constant of the




tance approximately equal to 2C2 The arc length along the unit circle (cen- (
tered at the position of a zero) spanning the distance between half-power points

is approximately 2uC%. This length corresponds to a notch bandwidth of

(BW)

uC¥Q/n
2uC?F Hz, (19)

where F is the sampling frequency in Hz. The Q of the notch is determined by

the ratio of the center frequency to the bandwidth.

wen

Q = ;:C—.'z-a (20)

The time constant of the mean square error "learning curve” for the LMS

algorithm has been shown to be [6,9]

i trace B iterations, (21)

Tmse =

© o o e

where R is the covariance matrix of the inputs to the weights, and n is the .
number of weights. Formula (21) applies when the eigenvalues are all equal. i
This is the case for the system of Fig. 2. Multiplying by the sampling period T,

the time constant is expressed in seconds of real time as

nT

= T i

'mse T 4u trace R see. (22)
' i
¢

For the two-weight adaptive filter of Fig. 2,
trace R = lcz +Lce2
2 2
= C2, (23)

This is Lhe sumn of the power into the weights. Combining equations (23), (22),

and (19) yields
(B7) = —1_ Ha. (24) ;

Tmse

Thus, the bandwidth of the notch is the reciprocal of the time constant of the
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learning process, for the simple system of Fig. 2.

Figure 5 shows the results of two experiments performed to demonstrate
that the adaptive system acts like a notch filter. In the first, the primary input
was a cosine wave of unit power stepped at 512 discrete frequencies. The refer-
ence input was a cosine wave with {requency w, of n/27 rad/s. The value of C
was 1, and the value of u was 1.25 x 1072 . The frequency resolution of the fast
Fourier transform was 512 bins. The output power at each frequency is shown
in Fig. 5(a). As the primary frequency approaches the reference frequency,
significant cancellation occurs. The weights do not converge to stable values
but "tumble” at the difference frequency,* and the adaptive filter behaves like a
modulator, converting the reference frequency into the primary frequency.
The theoretical notch width between half-power points, 1.59 x 1072 &,, compares

closely with the measured notch width of 1.62 x 1072 o,

In the second experiment, the primary input was composed of uncorrelated
samples of white noise of unit power. The reference input and the processing
parameters were the same as in the first experiment. An ensemble average of
4096 power spectra at the noise canceller output is shown in Fig. 5(b). An
infinite null was not observed in this experiment because of the finite fre-

quency resolution of the spectral analysis algorithm.

In these experiments, the filtering of a reference cosine wave of a given
frequency caused cancellation of primary input components at adjacent fre-
quencies. This result indicates that, under some circumstances, primary input

components may be partially cancelled and distorted even though they are not

.,
correlated with the reference input. In practice this kind of cancellation is of

concern only when the adaptive process is rapid; that is, when it is effected with
*When the primary and reference frequencies are held at a constant difference, the weights

develop & sinusoidal steady state at the difference frequency. In other words, they converge

on a dynamic rather than a static solution.
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large values of 2. When the adaptive process is slow, the weights converge to
values that are nearly fixed, close to the Wiener solution, and though signal
cancellation as described in this seclion occurs, it is generally not significant
due to the fact that the notch is extremely narrow. In any event, the primary

input appears at the output having gone through a notch filter.

V. SIGNAL CANCELLATION PHENOMENA

WITH A FROST ADAPTIVE BEAMFORMER

Figure 6 shows the antenna array and Frost beamformer that were used in
the series of computer simulation experiments to be presented below. The sig-
nal was assumed to be incident from broadside and the look direction con-
straint was set to unit gain and zero phase from zero frequency to half the sam-
pling rate, i.e. to a flat response over all frequencies. The jammer was
sinusoidal at one quarter the sampling frequency. In these experiments,
ambient noise and receiver noise were negligible. A typical converged beam
pattern is shown in Fig. 6, plotted at the jammer frequency. Only haif the sym-
metrical pattern is plotted. One can see that the look direction gain is unity,
and that the gain in the jammer direction is .019, 3¢ dB below the main beam
gain. Observation of the beam pattern gives the appearance that the beam-

former is working perfectly.

A bandpass signal was received by this adaptive beamformer whose spec-
trum is shown in Fig. 7(a). The spectrum of the sinusoidal jammer is shown in
F'i\g. 7(b). The output signal spectrum is shown in Fig. 7{(c). The input signal
appears at the output having gone through a notch filter. The notching effect is
evident in the output signal spectrum and is indicative of gross signal distor-

tion at the beamformer output. The notch width is not exactly equal to the

reciprocal of the learning curve time constant, but exceeds it by a factor of 2.
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The conditions for the derivation of the notch width formula (24), i.e.,
sinusoidal signals appearing with exact 90° separation at the inputs to the two
weights, are not precisely met with the 16-weight Frost processor under the
above stated experimental conditions. Neverthcless, the simple formula (24)
does give at least an approximate prediction of notch width that is applicable at

-

most jammer angles.

The notching phenomenon in adaptive beamformers is somewhat more
complicated than in adaptive noise cancelling systems. The useful signal arriv-
ing from the look direction encounters a unit gain due to the main beam con-
straint. This is analogous to the direct primary signal path of Fig. 1. The jam-~
mer signal arriving at other than the look direction encounters an adaptive
filter, analogous to the reference signal path of Fig. 1. The weights in the adap-
tive beamformer are not completely free as they are in the adaptive filter of
Fig. 1. The Frost constraint reduces the number of degrees of freedom to be
equal to the number of weights multiplied by the factor {(k~1)/k, where k is
equal to the number of antenna elements. Also, the spatial processing eflects
of the array and the multichannel structure of the adaptive processor intro-
duce differences in the dynamics of convergence between the adaptive beam-
former and the adaptive noise canceller.

Additional experiments were conducted with the system of Fig. 8. The jam-
mer was again sinusoidal, while the look-direction signal was composed of white
noise of unit power. The jammer power was varied. Spectra of the beamformer
outputs are shown in Fig. 8. With the jammer power set at its lowest level, the
sig;al cancellation notch is at its smallest bandwidth as is seen in Fig. Ba. As
the jammer power is increased and other parameters held constant, the notch

width increases. Figure 8(c) shows the widest notch for the strongest jammer

signal that was applied. In all of the illustrated cases, the relationship between

T
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notch width and reciprocal adaptive time constant has been preserved.

The results of another experiment are shown in Fig. 9. Here, the signal was
white, and the jammer was a strong bandpass noise. Signal components were
partially cancelled over the entire jammer spectral band, corresponding to
extensive signal distortion. It should be recalized that results of this type would
only occur in cases of very rapid adaptation. For the experiment of Fig. 9, the
time constant of the adaptive process was approximately equal to 20 sampling
periods. The bandwidth of the jammer was approximately equal to 15% of the
sampling rate,

Two remedies to the signal notching or cancellation problem will be dis-
cussed. The first is a method devised by K. Duvall based on the use of two signal
processing systems, one to perform the adaptation, the other to generate the

system output signal.

VI. THF DUVALL BEAMFORMER

In order to prevent signal cancellation, the useful signal arriving from the
look direction is excluded from the beamformer in which the adaptive process
takes place. In the system shown in Fig. 10, the adaptive process is only used to
derive a set of weights. These weights are copied into a separate, identical
"slaved” processor used to form the output signal. The adaptive process could
be the Frost algorithm, as indicated in Fig. 10, or it could be any one of a
number of adaptive beamformer algorithms that have appeared in the litera-
ture.

* The antenna array elements in Fig 10 are assumed to be uniformly spaced

2long a line. It is clear from the block diagram shown in this figure that,

because of the subtractive preprocessing, the look direction signal will not

v

appear at the Frost adaptive beamformer inputs but that the jammer signals




will be present as indicated. Receiver noise and ambient noise are neglected in
this discussion. The Frost algorithm will null jammer J. The strength and char-
acter of signal S will have no effect on the weights. Copying the weights will
cause the slaved processor to have a main beam which conforms to the Frost
constraints established for the look direction, and to have a null in the exact
direction of the jammer J. The correct alignment of the null is assured since
the relative phases of the jammer components are the same in the slaved
beamformer as in the Frost adaptive beamformer, where the nulls originate.
The phasor diagram in Fig. 10 verifies this in accord with the following argu-

ment.

The jammer components received by the antenna elements are indicated
by a set of equal amplitude uniformly-spaced phasors Jg, J1, J2,J3, and J4. The
phasor inputs to the Frost beamnformer are Jy—J4, J2—J1. J3~J2 and J,—=J3.
They too are uniform-amplitude. equally-spaced, and separated by the same
angles as the received jammer components Jg, J4, J2,. /3, and J4. Since the
relative phase angles are the same in the slaved processor as in the Frost pro-

cessor, the beam pattern notch is formed at the proper bearing angle.

The Duvall beamformer uses a standard adaptive bearnformer as one of its
components, Beam steering in any direction can be accomplished simply by
including bearmn sleering delays in the antenna circuits. Phase shifters would
be adequate for narrowband processes; delay lines would be required for broad-
band processes. It should be noted that although the phasor argument applies
only to one jammer at one frequency, linearity and superposition show that the
p:inciple is applicable to multiple jammers and to broadband as well as to nar-
rowband jammers and signals.

Experiments have been performed with this system, and results are given

in Figs. 11 and 12. Figure 11 compares the output spectrum of the Frost beam-

I S NPI- a

e




former with that of the Duvall beamformer (using a Frost beamformer), both
adapting with a time constant of .05, with the same array and with the same sig-
nal and jammer. The array and jammer were as shown in‘ Fig. 6. After perform-
ing the comparative experiments, the Frost beamformer showed evidence of
strong signal cancellation, while the Duvall beamformer showed no evidence of
signal cancellation. In the time domain, Fig. 12 compares the look-direction
input signal with the output signals of the Frost and Duvall beamformers. In
both cases the weights were initialized to zero, and adaptive transients are visi-
ble at the beginnings of the output tracings. Beyond the region where the tran-
sient exists, substantial signal distortion in the Frost beamformer output is
present. The distortion power was measured to be 6 dB below the input signal
power. Such distortion is not apparent at the output of the Duvall beamformer.

Here the distortion was measured to be 110 dB below signal level.

The Duvall beamformer appears to be an important development toward
mitigating the eflects of signal cancellation. It is, however, a recent develop-
ment, and possible limitations on its performance have yet to be assessed.
Effects of component inaccuracies and array imperfections are not yet under-
stood. How to use it with other than straight line, evenly spaced arrays is not
yet determined. Other methods for eliminating or reducing signal cancellation

eflects are also being pursued, such as spatial dither algorithms.

VII. SPATIAL DITHER ALGORITHMS

Spatial dither algorithms have been newly conceived for the purpose of
applying locally controlled modulation to signals arriving at angles other than
the look direction while leaving inputs from the look direction unmodulated
and undistorted. The effect is to cause jammer power to be spread spectrally,
thereby reducing jammer power density. When used with & conventional adap-

tive beamformer, spatial dither reduces signal canccllation effects. The same

-15-
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process has the additional capability of modulating a "smart” jammer signal in
a way that is tctally unpredictable to the jammer, thus in many cases render-

ing it "less smart."

A conceptually simple form of spatial dither algorithm is the "3/4-inch Ply-
wood” approach, pictured in Fig. 13. The elements of an anténna array may be
imagined to be fixed to a piece of plywood which provides a rigid insulating sup-
port, so that the entire array may be moved mechanically. In either one or two
dimensions, the array is moved in directions which are orthogonal to the look
direction. Far-field emanations arriving from the look direction will be undis-
torted by the mechanical motion, while emissions from off axis sources will be
distorted by an unusual shift-of-time-base form of modulation. (Electronic

means of implementation of this spatial dither process are being devised.)

The outputs of the antenna elements of Fig. 13 could be applied to a time
delay and sum (nonadaptive) beamformer, to a conventional adaptive beam-
former, or to a Duvall adaptive bearnformer. Sbatial dither could be beneficial
in each case. By reducing jammmer power density, some antijam protection is
provided without adaptive beamforming, and additional antijam protection is
provided with adaptive beamforming. Reduction of~srignal caricellation effect in
a Frost beamformer can be obtained by using spatial dither preprocessing.
Breakup of jammer signal structure is a possible form of signal preprocessing

applicable to all types of adaptive and nonadaptive beamformers.

The 3/4-inch plywood approach has been computer simulated, and results

are presented in Fig. 14. The motion was random and was done along a line per-
A

pendicular to the look direction. At every fourth sample time, the plywood posi-

tion was switched; the new position was drawn randomly from a uniform distri-

bution which ranged from zero to eight wavelengths. Figure 14(a) shows the

spectrum of the look-direction input signal, in this case a random bandpass sig-

M et
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o

.
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nal. The sinusoidal jammer spectrum is shown in Fig. 14(b). The spectrum of

the jammer from the physical reference frame of the array is shown in Fig.
14(c). It is clear that the jammer power is greatly spread, that jammer power
density is significantly reduced, and that the jammer signal is severely dis-
torted [rom its original form. In the simulation, bandpass filters were used with
each antenna output to rep;esent the effects of a receiver for each antenna.
The filtered signals were then applied to a conventional Frost adaptive beam-
former. Some signal distortion is evident, but the amount of distortion is
greatly reduced by the spatial dither. The output spectrum shown in Fig. 14(d)
is far less distorted than that of Fig. 7(c)., a comparable spectrum obtained

without spatial dither.

VIII. CONCLUSION

Signal cancellation effects occur in conventional adaptive beamformers
when jammer power and adaptation rate are high. These effects can cause sig-
nal loss in the case of narrowband signals or cause significant signal distortion
in the case of wideband signals. Means of combatting sign?;l cancellation have
been proposed, namely the Duvall beamformer and the spatial dither algorithm.
The latter approach will probably not be as efflective as the former against sig-

nal cancellation but has the capability of destroying "smart” jammer signals.
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PART II

ADAPTIVE POMER SEPARATORS ¥
i

Timothy Saxe




1 -~ INTRODUCTION

An adaptive power separator (APS) is an adaptive filter that
discriminates between signals on the basis of their powers. There are
different varieties of APS. Some pass low power signals and reject high
power signals (low-power pass APS), some pass only high power signals
(high-power pass APS), and others pass only signals with power within a
specified range. A low-power pass APS could be used in the "front end"
of a radio receiver to eliminate powerful signals from nearby trans-
mitters while still passing weak signals from distant transmitters. Of
course, a single channel APS cannot distinguish between two signals that
ove}lap spectrally.

This paper develops and analyses three different single channel
low-power pass adaptive power separators. Therefore, in this paper the
term adaptive power separator is understood to mean a single channel
power separator that passes only low power signals. However, the power
separators developed in this paper can be easily altered to pass high
power signals or even signals in a specified power rangé.

Previous workers in the field of adaptive filtering [Wid, Zah,

Tre, Che] have noted that some adaptive filters have a property

called power jnversion. Power inversion is a weak form of power separa-
tion in which signals with high power at the input to the adaptive system
have 1éss output power than signals with low input power. However, the
transition from low gain to high gain is not sharp so these filters

cannot discriminate between two signals that have nearly the same power.

30




The purpose of this work is to develop an APS with a sharp transition
that will be able to discriminate between two sigrals with nearly the
same powei.

Any APS is a nonlinear system. However, all of. the adaptive power
separators described in this work become 1inear filters if the adaptive
process is stopped. The adaptive process produces linear filters that )
use frequency discrimination to reject high power signals. Consequently,
a single channel APS cannot discriminate between two signals that over-
lap in f;equency. This limitation may be overcome by using a multi-
channel APS if the signals are spatially separated. For example, an APS
built into an antenna array could discriminate between two signals

provided that they either had different angles of arrival -or they did

" not overlap in frequency.




"

2 -- PREVIOUS WORK: THE LALE APS

The single channel adaptive system which is called the adaptive
(spectral) line enhancer (ALE) was first proposed by Widrow [Wid2]
for the detection of sinusoidal components buried in noise. He showed
that the gain of the ALE was a function of the signal-to-noise ratio.-
Thus the ALE can be used as an APS. However, the threshold power* of
the ALE }s difficult to control since it is a function of the input
noise power as well as the signal power. Widrow and Treichler [Wid3,
Wid4, Tre] proposed a modified ALE, called the "leaky" ALE (LALE); that
algorithmically simulates the effect of added input noise without
actually adding noise to the input. By this means the effective signal-
to-noise ratio, and hence the threshold power of the LALE, can be
controlled by altering a parameter of the adéptive process. Thus the
LALE is an APS with a selectable threshold power.

In this chapter we will analyze the performance of the LALE and
show that it can be used as a either a high-power pass APS or a Tow-
power pass APS. A brief intuitive explanation of the LALE is presented
first to aid in understanding the mathematical analysis of the LALE.

As was mentioned earlier, the ALE can be used as an APS. Since
the ALE is simpler to understand than the LALE, we will first study the

operation of the ALE. Figure 2-1 shows a block diagram of an ALE.

The heart of the ALE is the LMS (Least Mean Square) adaptive filter

*The threshold power of an APS is defined as the signal power for
«hich the voltage gain of the APS is 1/2.

32

e i e e -




(%)K

*(37V) 4ooueyu3 dut] aAjldepy

/

*{-g a4nb1J

/
433114 SW1

O
andino A,

/

(1)

(x)p

()2 7k
w2+

Lndut Adewtdd,

3ndu} soumxm

33




[Wid]. An LMS filter is a finite impulse response filter that tries to
form the best least squares fit between its input signal (x(k) in the
ALE) and the primary input (d(k) in the ALE). The "error” output,
which is the difference betﬁgen the primary input and the adaptive
filter's output, measures how successful the filter has been in matching
its input to the primary input. The "error" output is used as an
auxiliary input to the LMS filter so that the adaptive algorithm can
decide how to modify the transfer function of the filter to reduce the
mean square error. )

We can analyze the performance of the ALE without knowing how the
LMS filter actually reduces the mean square error. For the sake of
simplicity, assume that the input to the ALE consists of a sinusoid in
white noise. The input to the adaptive filter, x(k), s a delayed
version of the primary input, d(k). Therefore the "error" signal, e(k),
is the sum of three terms: 1) noise in the primary input, 2) noise
passing through the adaptive filter, and 3) a sinusoidal component. The
significance of the delay between d(k) and x(k) is that the adaptive
filter cannot match the noise in its input with the noise in the primary
input, but can match the sinusoidal component by generating the appro-
priate gain and phase at the frequency of the sinusoid. To minimize
the mean square error, the adaptive filter will try to pass as little
noise as passible while also passing the sinusoid with the appropriate
gain and phase.

A filter with a sinusoidal weight vector, at the same frequency
as the input sinusoid, will have a bandpass characteristic at the

fréquency of the input sinusoid and minimum bandwidth. This is exactly




the form that the ALE requires, so we assume that the weight vector of

the LIS filter is:

[N]i = a Cos{wi + @) i=0,1, ..., n-l

where

w is the angular frequency of the sinusoidal input

n is the number of filter weights

(Treicher [Tre] shows analytically that this is indeed the form of the
weight vector). A filter with this weight vector has a gain of %a
and phase shift of ¢ at frequency w, and a bandwidth of 2/n. Thus if
the power of the input sinusoid is P and the power of the input noise
is 02, then the power at the "error" output is:

My od-jusT)®

_ 2 2,n 22 _
P = ¢ +o (2 a) -+ PN 5a

e

The LMS filter will converge to (a*,¢*) the values for which the error

powar is minimum

L] n
o - o2 2 _ 7 SNR
P n n
1+ 7 1+ > SNR
o]
o* = wAT
\where
SNR = P/o2 = signal to noise ratio
T = sampling period .
35




At low SNR, i.e. low signal power for fixed noise power, the gain

( a) is low, but for high SIR the gain tends to one. Thus the ALE

is a high-power pass APS because it passes strong signals better than
weak signals. Figure 2-2 shows the transfer function of an ALE for
several different SNR's. Incidentally, Treichler [Tre] has shown that
the response to several sinusoidal inputs is the superposition of the
response to the individual sinusoids provided that the frequencies of.
all the sinusoids differ by more than 1/nT Hz (where T is the sampling
‘period). .

A deficiency of the ALE is that the response depends upon the
signal to noise ratio, not the signal power. Widrow and Treichler
{(Wid3] proposed adding noise to the input of the ALE, which would allow
the designer to control the signal to noise ratio and ihereby control
the characteristics of the ALE. Of course this technique makes the out-
put of the ALE more noisy and increases the variance of the LMS filter's
weights, which modulates the output signal. However, since the
characteristics of the injected noise are known, the effects of the
noise upon the LMS algorithm can be computed. These effect can then be
incorporated into the LMS algorithm [Gri, Wid4, Tre] which results, in
the case of white noise added to the input, in the leaky LMS (LLMS)
algorithm. The advantages of using the LLMS algorithm instead of
injecting noise are a less noisy output, less weight variance, no need
to build a noise gensrator and the LLMS algorithm can act as if noise
with negative power were added to the input. For convenience we will
refer to "algorithmic noise" when we mean the noise effects that are

incorporated into the LLMS algorithm.
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By altering a parameter of the LLMS filter the designer can control (—
the power of the "algorithmic noise." This permits the designer to
control the effective SNR (effective SNR is the signal power divided by
the sum of the actual input noise power and the “algorithmic noise"
power), and thereby control the characteristics of the LALE. Thus the
LALE is a high-power pass APS with a controliable characteristic.

The rest of this section is devoted to a more comprehensive and
quantitative analysis of the LALE. This analysis is based on Treichler's
[Tre] extensive analysis of the ALE with appropriate modifications to
account for the changes betwzen the LMS (Least Mean Square [Wid])
algorithm used in the ALE and the LLMS (lLeaky LMS) algorithm used in
the LALE. While the analysis is for the most part general, assumptions
about the inputs are required to obtain insight into the solutions for
the LALE weight vector. In particular, the LALE APS can be used to
reject high-power, narrowband interference (where narrowband means a
bandwidth significantly less than-gf where n is the number of LALE
weights and T is the sampling interval). Therefore we assume that the
input to the LALE consists of narrowband signals and white noise.
Treichler [Tre] showed that under'these conditions the input to the

LALE can be modeled as one sinusoid per narrowband signal. Thus the

input to the LALE is modeled as a number of sinusoids in white noise.
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2-3 and 2-4;

x(k)
X(k)

W(k)
y(k)

e(k)

d(k)

1

by defining various quantities in accordance with Figures

adaptive filter input at time k

[x(k), x(k-1), ..., x(k-n+])]T

contents of tapped delay line at time'k
vector of n filter weighting coefficients
XT(k)u(k)

adaptive Tilter output .
d(k)-y(k)

the "error” signal (drives the adaption)
x{k+a)

desired (or reference) signal

decorrelation delay time

The LLMS algorithm for modifying the weight vector is:

where
v

W(k+1)

w(k) + 2ue(k)X(k)

[l - 2ax(K)XT(K)IM(K) + 2ud(Kk)X(k) (2-1)

an arbitrary constant (leak factor)

1 -2 uy

pover of “algorithmic noise”

arbitrary constant which controls the rate of adaption and

the stability of the algorithm
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The average behavior of the LALE weight vector can be derived from (

equation 2-1 by taking the expected value of both sides of Eq. 2-1 and

ignoring the covariancebetweenX(k)XT(k) and W(k) (this is an acceptable

approximation if yu is small [Sen, Dan]):

E(W(k+1)} = [vI - 2uR(k)] E{W(K)} + 2uP(k) (2-2)

where .

E{x(k-1) x(k-J)}
= input autocorrelation matrix _
E{d(k) x(k-i)}

= desired-to-input cross
correlation vector .

(R(K)]; 5

KT VI

[P(K)1;

rad

If the input, x(k), consists of one or more statistically

e e e e -

independent, zero-mean and stationary components, then R(k) = RotR.

and P(k) = PatPss where R is the autocorrelation matrix associated

-

with the inputs whose correlation times are less than A and Rs is the

autocorrelation matrix associated with the inputs whose correlation

times are greater then A. If we assume that the incoherent components

can be modeled as white noise with power oz. then Rn = azl. Finally,

if A> 1 then P(k) = Py since P, is equal to zero (it is the autocor-

relation of white noise for lags greater than A). Provided that all of

these conditions hold, Eq. 2-2 can be written as:

. E{W(k+1)} = [vI - 2u(o21 + Rs)] E{W(k)} + 2uP, . (2-3)

Since Rs ijs the autocorrelation matrix of a real valued stochastic

process, it is symmetric, Toeplitz, positive semi-definite and has a
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full set of n orthonormal eigenvectors QO through Qn R [Gra]. These
eigenvectors can be used to form the modal matrix Q, where
Q= [Qo- cees Qn—ll‘ It is well knoun [Der] that the modal matrix has

the following properties:
TRQ = A . (2-42)
a0 = 1 (2-4b)
where A is the diagonal matrix of the eigenvalues of R
c denotes the complex conjugate of ¢ .

1f a transformed weight vector is defined as W7(k) = ﬁTW(k) and if both

sides of Eq. 2-3 are premultiplied by 51, then:

]

EM (K} = QUEM(K)}

- Qo1 - 20(c%1R )] QE(K)} + 2P . (2-5)

Equation 2-5 can be further simplified by using the relations given in

Eq. 2-4 and by defining C = Q' P:
EW-(K)} = [vI - 2u(c®l + A)] E(W-(K)} + ZuC - (2-6)

The transition matrix of this recursion expression is diagonal
since 1 and A are diagonal. Therefore the transformed weights, W°(k),
are uncoupled, so a separate scalar recursion expression can be written

th

s for each [E{w’(k)}]i. The expression for the i uncodpled weight is:

[E0- (K] = [v - 2u(e®)IEG (K + 2ulC];  (2-7)

th

where A; is the i eigenvalue of R..
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Incidentally, if v =1 - 2uy is substituted into Eq. 2-6, the

result is:
EW(K)) = [1 - 2u([o%+y]1 +A)] EQM-(K)} + 2uC . (2-8)

Equation 2-8 shows that y affects the average weight vector in the
same way as oz. Since the effects of y are analagous to the effects
of the white noise in the input, y is called the "algorithmic noise” .
power. An LLMS filter with parameter y will have the same average
wejght vector as a Wiener filter with noise of power y added to its
input signal. In a similar vein, the term "effective.noise” power is
used to mean [02 + v], which is the sum of the actual input noise power
and the "algorithmic noise" power.

Using the definitipn of vy, the scalar recursion for- the uncoupled

weights (Eq. 2-7) can be written as:
B (01 = [0 - 2uloPrm JEM (Y + 2uc]; - (2-9)
If the adaption constant y -is chosen so that
0< |1 - 2ulaf+ynag)] < 1 (2-10)

then each uncoupled recursion expression (Eq. 2-9) is stable, and
E{W"(k)} will converge to a value E{W’(=)} which is independent of the
starting conditions. The converged value is:

[cl.

[EW (=)}); = — : ‘+ - i=0, 1, ..., =1 . (2-11)
(o] Y i

Reversing the coordinate transformation yields:

(2-12)




P

-

[OPSIITE

Equation 2-12 defines the expected value of the converged weight
vector. This definition is in terms of the eigenvectors of the input
autocorrelation matrix, the power of the true input noise, the power of
the equivalent noise and the power of the coherent signal component.

To determine the response of the LALE to particular inputs requires
explicit solutions for the Q; and [C]i’ and knowledge of 02 anrd y.
Since the input to the LALE can be modeled as multiple sinusoids in
white noise, Treichler's results {Tre] are useful. Treichler showed
that if the input consists of one or more sinusoids which meet the
following criteria: 1) frequencies are between 20% and 80% of the
Nyquist frequency (otherwise the two active eigenvalues degrade into a
single active eigenvalue), and 2) all sinusoids are separated in
frequency by at least #f Hz (otﬁerwise they interact instead of acting

independently), then for each sinusoid of power Py and frequency wy the

following approximations hold:

- __]_ [] ejw.iT ej(n-l )wlT]T
Q = =
] -1 [] e'j“’iT e-.i(n-l)mir]T
i T e
(cl; = gpifxp(iw,-d)
(cl,.; = i—glpisip(juia)
Ay 2 7P (2-13)
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These results can be substituted into Eq. 2-12 to determine the average
weight vector of the LALE. Specifically, if the input to the LALE

consists of a single sinusoid of power p and frequency w in white noise

of power oz, then

[E{H(m)}]i = —Z——p-—bn“ COS{("""A)UJT] .
Y+

A filter with this weight vector has a bandpass characteristic with a

t\%:l

maximum gain of " at the frequency of the sinusoid. Figure
"+ y + 3P
2-5 shows the transfer function of the LALE for several input powers.
The operation of the LALE is more conveniently described as a gain
characteristic (see Figure 2-6). The gain characteristic shows’ the
converged gain of the adaptive system at the frequency of the input
signal as a function of the signal's power. We see from Figqure 2-4 that
the LALE passes powerful signals and rejects weak signals and is thus a
hfgh-power pass APS. If a low-power pass APS is required, the “error"
output of the LALE can be used instead of the "y" output. The "error"
output gain characteristic is shown in Figure 2-7.

The threshold power of an APS hereby defined as the input signal

power for which the gain of the APS is %u -In the case of the LALE the

threshold power is %(cz+y). Mow the input noise power 62, is be&ond
the designer's control, but v is controllable since it depends on u and
v which are both parameters of the LLMS filter. Thus the threshold
power of the LALE is eésily controllable. However, the transition from

high gain to low gain is gradual so the LALE is said to have a soft
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Figure 2-5. Transfer function of the LALE |
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Figure 2-6. "y"-gain characteristic of LALE
_ (High-power pass APS).
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threshold or broad transition region. Because of the soft threshold a
LALE based APS cannot decisively discriminate between two signals with

nearly the same power.




3 -- PRACTICAL SPECIFICATIONS FOR AN ADAPTIVE POWER SEPARATOR

Figure 3-1 shows the gain characteristic of leaky adaptive line
enhancer superimposed on the gain characteristic of an ideal APS. The
gain characteristic of the ideal APS has unit gain for input power less
than some threshold power and zero gain for input power greater than .
the éame threshold. 1In contrast, the'gain characteristic of the LALE
(Yeaky adaptive line enhancer) has no sharp discontinuity and is never
zero. Thus the LALE cannot reject signals, it can only attenuate them.
However, the LALE has a gain of nearly one for low power inputs and a
gain of nearly zero for high power inputs. Thus the LALE is similar
to the ideal APS because it passes low power signals more strongly
than it passes high power signals. The purpose of this chapter is to
define specifications which quantify the difference between a practical
APS (such as the LALE) and the ideal APS.

One approach to defining a practical gain specification is to allow
a range of gains which are near to the ideal gain. For example, instead
of requiring that the gain be one if the input power is léss than some
threshold, require that the gain be between 1-§; and 1+51 if the input
power is less than the threshold. Figure 3-2 shows a gain tolerance
scheme which is based on this idea. A mathematical description of the

allowable gains is:

A
—

1 - 5] + 5] for p < P

A

g + 5] for Py <P< P, (3-1)

g, forp,c<p .
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We will refer to this tolerance schene as tolerance scheme one (TS)).
If 6] =0, 62 = 0 and P] = Py then TS1 describes the ideal APS gain
characteristic.

An alternative is to consider the APS entirely from the power
domain. Figure 3-3 shows a power-out vs. power-in curve for an ideal
APS. The power-out vs. power-in formulation suggests bounding of the
output power rather than the filter gain. N

A practical power-out vs. pm-:érein specification can be derived
by permitting tolerances about the ideal curve. Figure 3-4 shows a
practical power-out vs. power-in tolerance scheme. This tolerance
scheme will be called tolerance scheme two (T7S2). TS1 and 752 differ
because TS2 controls the response to high power inputs more tightly
than TS1. If TS1 is converted into a power-out vs. power-in specifica-
tion (see Figure 3-5), it is clear that TS1 permits high power inputs
to have high output power. TS2, on the other hand, guarantees that
signals with input power greater than p, will have less output power
than signals with an input power between P3 and Py~

A mathematical description of TS2 is:

1 -pysgcl+p for

=)

A

©
-

gi]+p] for Pp<Ps<P, (3-2)

,pz
g < pz -—p— for pz <Pp .
LS

1f py = 0, p, = 0 and py = Py, then T7S2 describes the ideal APS

characteristic. Also, if §; = p; and §, = p, then TS2 is equivalent

)
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to TS1 for input power less than p, (but TS2 is more stringent than TSI
for input powers greater than p2).

The two tolerance schemes presented in this chapter can be used to
describe a practical APS. By using these schenes to characterize
different power separators we will be able to identify the strengths and
weaknesses of the different power separators with the goal of developing

improved practical power separators.




4 -- APSZ: A DFT BASED ADAPTIVE POWER SEPARATOR

A straightforward approach to adaptive power separation is to
evaluate the power spectrum of the input signal and then to use the
spectrum to design a filter which has zero gain at frequencies where the
power spectral density exceeds a chosen threshold and unit gain else-
where. When the input signal is applied to the resulting filter
(see Figure 4-1), the output will contain only the weak input components
which do not spectrally 5ver1ap the strong input components. This is a
general structure for an APS.

The power spectrum of_a'signa] can be evaluated by the digital
Fourier transform (DFT). This technique, which is called the Welch-
periodogram method [0pp]l, creates a power spectral estimate by averagirg
the squared magnitude of the DFT of the input data. An associated
filtering technique multiplies the outputs of the DFT (which correspond
to spectral components) by zero or one and then takes an inverse DFT to
obtain the output time series. Figure 4-2 shows the block diagram of an
adaptive power separator which is based on these ideas. This APS is
called the APS2.

The input signal is applied to the APS2 as a series of data samples,
and the APS2 computes the DFT of the last n data samples:

n-1

[6(k)], = _):Ox(k-i) Exp(2e'®)  m=0, 1, ..., 01 (4-1)
,:
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where
G(k) = wvector of DFT values at time k
. m = spectral bin number
= nfT
T = sampling period
f = frequency .

Each DFT value [G(k)]m is the output of a finite impulse response (FIR)

filter with transfer function:

n-1
Y exp(izayz
i=0

H(Z,m)

-n .
- 1 -1 m=0,1, ... n=1 . (4-2)

1 - Exp(i2mz

Thus the DFT of the input sequence can be computed by a bank of n FIR
filters with transfer functions given by Eq. 4-2 [Pap]." Figure 4-3
shows an implementation of the DFT which is based on Eq. 4-2. Mhile
a more efficient way to compute the DFT is by one of the fast algorithms
such as the fast fourier transform, great insight can be obtained by
viewing the DFT as a bank of bandpass filters. Thus we will analyze the
APS2 as if it were made from a bank of bandpass filters.

) The APS2 filtering technique multiplies the outputs of the DFT by
zero or one and then inverse DFT's the resulting filtered signal to
obtain a time series. If the DFT is modeled as a bank of bandpass

filters, as shown in Figure 4-3, then the APSZ filtering technique can

be modeled as multiplying the outputs of the bandpass filters by zero or
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one and then summing the weighted outputs. This is shown in Figure 4-4
where the threshold devices have an output of 1 if the input power at a
given spectral bin is less than the threshold power and 0 if the input
power is greater than the threshold power. We will use this model to
analyze the two phases of the APS2's operation: spectral estimation and
filter design.

Recall that the APS2 uses the average squared magnitude of the DFT

as an estimate of the power spectrum. Also, the mth

DFT output is the
output of a filter with transfer function given by Eq. 4-2. This filter

has n zeros, equally spaced on the unit circle at frequencie§'which are

integer multiples of gf’ and a pole at Exp(jZn%) which cancels the zero
at frequency g%. The transfer function of such a filter is shown in

Figure 4-5 (m = 4, n = 16 for this filter).” If the input consists of
sinusoids at integer bin numbers* (i.e. their frequencies are integer

th filter will be propor-

multiples of #f)’ then the output pawer of the m
tional to the power of the sinusoid at frequency ﬁ% because the zeros
of the comb filter will cancel all of the sinusoids except the sinusoid

at frequency M where there is a pole zero cancellation. Thus, provided

nT
that the input consists of on-bin sinusoids, the power in the DFT out-
put is the true power spectrum. However, if the input has off-bin
sinusoids, then the APS2 will not estimate the true power spectrum.
Consider the case of a sinusoid at frequency fu (see Figure 4-5). This

sinusoid is in a sidelobe of every DFT filter and so will pass through

*In digital filtering, signal frequencies are often expressed in
terms of spectral bin numbers where:
bin number = f x T x number of points in the DFT .
For convenience, signals with integer bin numbers are called on-bin
signals and those with non-integer bin numbers are called off-bin
signals.
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In summary, the APS2 functions ideally for any number of sinusoidal
inputs provided that their frequencies all correspond to integer bin
numbers. Sinusoidal inputs which are not on-bin can cause undesirable
effects. First, the DFT based power spectrum estimator will exhibit
leakage. This causes the power spectral estimate to show more power
than is really present at scme frequencies, so the APS2 may block weak
sigrnals because the power spectral estimate falsely indicates that they
are strong. Similarly, the power spegtral estimate may show less power
at some frequencies than is actually present. Second, the filter design
used by the APS2 to reject powerful signals unfortunately creates
relatively large gains in portions of the rejection region. C(Consequently

the APS2 will only partially reject powerful off-bin signals.

Simulation of the APS2

An APS2 based on a 32 point DFT was simulated. The first test

input to the APS2 was the sum of two sinusoids. Sinusoid one was at 257

(]

of the Nyquist frequency (bin number = 4) and sinusoid two was at 56.25%

of the Nyquist frequency (bin number = 9). During the simulation the
power of the first sinusoid was varied from 0.1 to 100 and the power of
the second sinusoid was held constant at 0.1. The threshold power was 1.
Figures 4-7A and B show the gain characteristic of the APS2 at the
frequency of each sinusoid. Since both of the signals were on-bin the
DFT did not suffer from leakage and the APS2 functioned perfectly.
Figure 4-7A shows that the gein at the frequency of sinusoid one was
unity when the power was less than the threshold and zero when the power

exceeded the threshold. Figure 4-7B shows that the gain at the frequency

of the sinusoid two remained unity for all powers of sinusoid one.
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Figures 4-8 shows the transfer function of the APS2 for several
powers of signal one. From this figure we see that the APS2 cancels
the powerful signal by creating a notch at its frequency.

Figures 4-9A and 8 show the gain of the APS2 for the another test
input. Again the test input was the sum of two sinusoids. Sinusoid one
was at 28.125% of the ilyquist frequency (bin number - 4.5) and sinusoid
two was at 56.25% of the Nyquist frequency (bin number - 9). During the
simulation the power of sinusoid one was varied from 0.1 to 100 and the
power of sinusoid two was held constant at 0.1. The threshold power was
1. The major weaknesses of the APSZ are apparent from this figure:

(A) Because the gain of a DFT bandpass filter is not unity for off-bin
signals, the gain at the frequency of sinusoid one remained unity when
the power of the sinusoid was between 1 and 2, even though the threshold
power was 1. (B) Because of poor filter design, when the gain at
sinusoid one's frequency did change, it first increased and then slowly
dropped towards zero, rather than immediately becoming zero. (The only
reason that the gain drops as the signal power increases is that leakage
causes more and more of the poles to be removed.) (C) The gain at the
frequency of the second sinusoia dropped to zero even though the power
at that frequency was always less than the threshold power. This is

the result of leakage from sinusoid one.

The effects of leakage can also be seen in Figure 4-10 which shows
the .transfer function of the APS2 for several powers of signal one.
Figure 4-10 sho@ that the APS2 is an allpass filter when the power of
signal one is 0.1. When the power of signal one is 2.5, the APS2

develops a notch near the frequency of signal one. However, sidelobe
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effects cause the gain at the frequency of signal one to be greater than
one. When the power of signal one is 100 the APS2 notches a wide range
of frequencies, including the frequency of signal two. This wide notch

is caused by leakage from signal one.
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5 -- APS3: AHN LALE-DFT BASED ADAPTIVE POWER SEPARATOR

Introduction

This chapter proposes and examines an APS which uses the LALE and
a DFT for spectral analysis, and a DFT based filter design technique .
called frequency sampling [Rab] to design bandstop filters. This
adaptive power separator will be called the APS3 to distinguish it from
the purely DFT based APS2 that was analyzed in Chapter 4. The reason
for using a LALE and a DFT for spectral estimation is that the LALE
reduces leakage effects and is not sensitive to the frequency of the
signals (i.e. the.signals do not have to be 'on-bin'). The advantage
of the frequency sampling filter design technique is that it is simple,
fast, and by increasing the filte} length can create arbitrarily good
filters. Thus the APS3 improves on the two weaknesses of the APS2:
poor power spectral estimation and poor filter design.

The APS3 is based on the same simple idea as the APS2. Estimate
the power spectrum of the input and then design a filter that passes
the frequencies which have low power signals and rejects the frequencies
which have high power signals. Figure 5-1 shows a block diagram of the
APS3. The theory of operation is: 1) the LALE forms a filter with a
gain that is related to the signal-to-noise ratio (SNR). The larger
the signal power the larger the SNR and consequently the larger the
filter gain. 2) The DFT of the weight vector of the LALE measures the

gain of the LALE, which is a modified power spectral estimate. 3) The
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nodified power spectral estimate is used to create 2 desired filter
characteristic, which is then realized as a practical filter. 4) The
resulting filter is used to filter the input, and by design the output
of this filter will contain only the weak signals.

The next few sections are devoted to analyzing the modified power
spectral estimate that is derived from the LALE. WUe show that this
modified power spectral estimate has less leakage than a DFT based powar
spectral estimate. Thus the LALE power spectral estimate can detect
small signals that are near powerful off-bin signals better than a
DFT power spectral estimate. (MNote: the use of windows with the DFT
will reduce the effects of leakage, but very powerful off-bin signals
will still swamp small signals.) Thus the LALE power spectral estimate
can be used to obtain arbitrarily good switching characteristics, so
the APS3 can have a lower power threshold P that is arbitrarily close
to the upper power threshold Py (see the descriptions of tolerance
scheme one and two which are given by £q. 3-1 and 3-2).

The last sections of this chapter analyze the filter design
technique used in the APS3. ‘e prove that the filter design technique
used in the APS3 can design arbitrarily good (in an integral squared
error sense) filters., Thus we show that the APS3 fits gain tolerance

scheme one (Eq. 3-1).

LALE-DFT Based Power Spectral Estimate

In this section we will use the analysis of the mean LALE weight
vector, which was presented in Chapter 2, to show that the OFT of the
LALE weight vector is a modified power spectral estimate. The perform-

:nce of the LALE-DFT power spectral estimate will be analyzed and
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compared to the conventional VYelch periodogram power spectral estimate.
Again, the analysis in this section follows Treichler's [Tre] analysis
with only small modifications to account for the use of a LALE as

opposed to an ALE.

The discrete power spectrum of a signal x(k) may be found by taking
the DFT of n samples of the autocorrelation function of x(k). If the
autocorrelation of x(k) is r(t), then samples of the autocorrelation

function can be grouped to form the vector: .
r = [r(a), r(a+1), ..., r(A+n_‘l))T R

The discrete power spectrum, S, corresponding to this autocorrelation

vector is:
S = F.T (5-1)

where F is an m by n matrix formed from the basis vectors of the DFT.

The elements of the F matrix are:
. iZ
[F1; p = Explizn(m+ o)} (5-2)

where the starting phase, ¢, is arbitrarily set to carrespond to the

decorrelation delay A.

The ALE spectral estimate, which is derived from the DFT of the

expected LALE weight vector, can be written as:

{4

S|ALE F-E{W)
{cl.

A (5-3

n-1
=t 2 0 - )

1’:00 +Y+A\,
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If the input can be modeled as K sinusoids with powers
Pys vees pK and f;equencies Ops wees Wys and if all of the sinusoids are
separated by at least ﬁ%—Hz and all of the frequencies are between 20%
and 80% of the Nyquist frequency, then the autocorrelation matrix has
eigenvectors of a simple form (Eq. 2-13). Under these conditions

£q. 5-3 becomes:

r. (5:4)

K
= F .Z

g 1
il ¢ +y + % p

LALE

th

where Fi is the autocorrelation vector associated with the i sinusoid.

Substituting the definition of the discrete power spectrum (Eq. ©5-8)

into Eq. 5-4 yields:
- 1 _
S = ;—: ““““‘2 T n T Si ( 5-3)

where si is the power spectrum associated with the ith sinusoid.
Thus Eq. 5-5 shows that the LALE-DFT power spectrai estimate
contains the true power spectrum, but with a considerable (but desirable)

distortion of the estimated power. If we define a shape vector for the

power spectrum of a sinusoid as:

3N

Fr

- s (5-6)
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where [ is the autocorrelation vector of a sinusoid

p is the power of the sinusoid .

Then for a sinusoid at frequency w,

sin(jznt - W)} Sind}{2zp + wT)) (5-7)
— + ¥ -
nSin{z{2nk - WT)}  nSingh(2et + wT))

RS

The LALE-DFT power spectral estimate is, in terms of fhe shape vector,

(7204
J

i 2 EStRy (5-8)
= —_— . -
LALE i=1 1+

¢

where

h sinusoid

ESHR, effective SNR of the it

= p‘i
02+Y

For comparison, the Welch spectral estimate is:

K
S = 2Ry . (5-9)

i=1

Thus the LALE-DFT produces an amplitude distorted power spectral
estimate when compared to the Welch spectral estimate. However, the
% amplitude distortion can be comperisated for in the APS3 by adjusting

threshold powver Py- Since the amplitude of the LALE-DFT power
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spectral estimate is a monotonic function of the signal power, an

amplitude threshold a, can be found for any given power threshold Py

2t T 2 n (5-10)

such that if the amplitude of the LALE-DFT power spectral estimate is

greater than a_, then the power of the input signal must be greater than

t
Py Thus the LALE-DFT powar spectral estimate can be used by the APS3
to distinguish between weak signals and strong signals.

Compared to the Welch spectfum, the LALE-DFT spectrum provides
better detectability of relatively weak signals that are close in
frequency to powerful signals. This advantageous behavior is a result
of the biased amp]itﬁde in the LALE;DFT spectrum. Recall that the
LALE-DFT spectrum is composed of a sum of scaled shape functions
(Eq. 5-8). These shape functions, U, have a maximum amplitude of 1 and
sidelobes whose amplitudes are inversely proportional to the difference
between the frequency of the sidelobe and the mainlobe. The maximum
scale factor is unity, so the largest possible peak in the LALE-DFT
spectrum has an amplitude of unity. Therefore, since the largest side-
lobe of the shape function js typically less than 0.25 for a reasonably
sized DFT, the largest sidelobe in the LALE-DFT spectrum is smaller
than 0.25. 1If y is appropriately chosen so that s the amplitude
threshold, is greater than 0.25, then no sidelobe can exceed a, thus no
sidelobe can be falsely treated as a powerful signal. (However, side-
lobes can add and thereby cause a weak signal to appear strong or a
strong signal to appear weak. This effect is relatively minor and only

of concern when there are closely spaced input signals, consequently
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the superpositiun of sidelobes can usually be ignored if all of the
input signals are separated by at IEa;t 1.5/nT Hz.) In contrast the
Helch spectrum is also composed of scaled shape functions, but the
scaling factor is proportional to the signal power. Thus a powerful
signal will have large sidelobes which would be falsely treated as
powerful signals.

Figure 5-2 illustrates the difference between the LALE-DFT spectrum
and the Welch spectrum. The input consisted of the sum of two sinusoids.
One sinusoid was at 25% of the Nyquist frequency with a power of 1, and
the other was at 32.8125% of the Myquist frequency with ; pover of 10.
These spectral estimates were computed with a 256 point DFT of a 32
weight LALE (224 zeros are appended to the 32 values of the LALE weights
to generate a 256 point vector for the DFT) and a 256 point DFT of a.

64 point autocorrelation function, since a 64 point autocorrelation
function is as easy to compute as a 32 weight LALE. (Note: the DFT of

a 64 point autocorrelation function has better frequency resolution than
the DFT of a 32 point autocorrelation function, thus this comparison is
not biased in favor of the LALE.) The LALE power spectrum clearly shows
the peak due to the smaller signal, whereas the smaller signal is
swamped in the Welch spectrum. Thus for any fixed computational com-
plexity, the LALE-DFT power spectral estimate has less leakage than the
Welch spectrum.

We have established that the LALE-DFT power spectrum can be used
to determine the frequencies at which the signal power exceeds a pre-
determined threshold. However, if a simple threshold device is used to
distinguish between low power and high power signals, noise in the

spectral estimate could cause serious problems. For example, if the
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Power of signal at frequency f2 10.0

Figure 5-2. Comparison of YWelch and LALE power spectra.
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expected spectrum is near the threshoid value then noise could cause
the threshold device to switch repeatedly as the actual spectral
estimate varied about the expected value. Switching by the threshold
devices would cause the APS3 to redesign its bandstop filter, and this

would, in turn, modulate the output which is often undesirable. Thus

we need to analyze the noise in the power spectral estimate.

~

Variance of the LALE weight vector

The variance of the LALE-DFT power spectral estimate depends on the
vériance of the LALE weight vector, so in this section we analyze the
variance of the LALE weight vector. As in Chapter 2,'this analysis
follows Treichler's [Tre] analysis with only those modifications required
to account for the change in adaptive algorithm.

Define the weight'vector noise to be:
av{k) = W(k) - E{W(k)} (5-11)
then the weight vector cov;riance is:
E{an(k)aW (k)} = m(k) - (5-12)

The evolution of aW(k) is complicated, so we study instead the evolution

of v{(k) where:
V(k+1) = [vI-2uR(k)]JV(k) + Zu[d(k)x(k)—Ps] . (5-13)

The evolution of Vy(k) closely models the average behavior of AW(k),
especially if u is small and the LALE is near convergence. Since V(k)
closely approximates AW(k), the converged covariance of Vv will approxi-
mates . W(k), the converged covariance of v will approximate the converg-
ed covariance of AW,

The covariance of Vv can be written as:
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EQV(k+1)VT(k+1))

Cov{V(k+1))

= [vI-2uR(k)]JCov{V(k)} [vI-2,.R(k)]

k
+ au2[EB(K,0)} + ;Z%([vI—ZuR(k-i)]]
]:
+ E(BT (k1)) [vI-2uR(k,1)11)] - (5-14)
where the matrix B(k,i) is defined as: )
B(k,i) = [d(K)X(K)-P] [d(k-i)x(k-i)}-P 1T .  (5-15)

Equation 5-15 is a function of the specific input signals and very
complicated. However, if the input consists of white noise of power 02
and a sinusoid of paower p and angular frequency ¢ then Treichler [Tre]

showed that:

«
AY

2
[E(B(k,1)}], = § CosluT(£-n-21)]

+ peos[wT(£-m)]c26(L-m+i)
+ pcos[mT(z-m+i)]czd(i)
+ 046(i)6(£-m+i) .

By transforming Eq. 5-14 with the modal matrix Q, and defining
v(k) = Qu'(k), 1 = Qn'ﬁT, and assuming that p and y are small enough
so that [vI-2uR]™2 2 1, then:
[] lT - 2 I . |T
EQV' (k+1)V' ' (k+1)} = [vI-2u(c"+A)JE{V'(K)V' (k)}
2,
+ [vI-2u(o™+A)]

v 2ty (5-16)
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(i Both the transition matrix and the driving term of Eq. 5-16 are (
diagonal, so the converged value of Ni' is diagonal. Thus Eq. 5-16 can

be solved for the converged value of f':

UUZ(Zli+UZ)

n' -4 s
[n* )]7’] (Y+02+Xi) - U(Y+02+Ai)2

2, . MY -
po (1 + —) . (5-17)
yt+to + Yi

te

Equation 5-17 can be solved for Ii(«=) by reversing the coordinate
transformation: ]

n-1

A
Ne) = wol(1+ % —b——0Qa) . (518) i
=0y t+to + Ai ;

Equation 5-18 is valid if the input consists of multiple sinusoids in

white noise. As a check, if the input has low SNR, i.e. 02 >> %’Ai’

then T(«) = uczl which is the result derived in [Wid] for stochastic

inputs. |

varijance of the LALE-DFT power spectral estimate

penote the actual LALE-DFT spectral estimate as §LALE and the
mean spectral estimate as gLALE _ F-E{W}. Using these definitions the

covariance of SLALE is:

-~ - ~ - ”~ _ T
CoviS gt = EUS ¢ SLALE)(S.LALE Stace) '}

FEC(M-EQW}) (M-EWH) IET . (5-19)
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From Eq. 5-18,

¢
T = E{(M-EQW})(W-E(W})T)
" uoz(I+R ) (5-20
-~ e - )
where:
n-1 v
Re = L ———— ‘
i=0 y + o0 + )‘i
= coherent input equivalent
autocorrelation matrix .
Substituting Eq. 5-20 into 5-19 yields:
Cov (S, 5 o} G2 (n1+FR FT) (5-21)
LALE H e -
i {‘ The variance of the spectral estimate is the main diagonal of
cov{SLALE}. solving for the variance yields:
n-1 n-1
- - . 1~ L
[Var{SLALE}]m 2 %; [H]i,£ Exp(2mim~—0r-=)
i=0 £=0
2 o} t t
= yo |1 + E: 91%—1 re(t)Exp(anmﬁ)
t=-(n-1)
(5-22)
where
\ -
r (t) = the coherent component equivalent
€ autocorrelation function .
ne
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Equation 5-22 shows that the variance of the spectral estimate is
a constant plus a curve which is determined by the DFT of a Bartlett-
windowed version of the equivalent coherent autocorrelation function
re(t). An impartant property of the variance is that it is proportional
to u. Thus by decreasing p, the variance of the spectral estimate can
be reduced to any desired value.

A simple example serves to illustrate the properties of the

< m
variance. Suppose that the input is a sinusoid of frequency H%

(an on-bin signal) and power p, then:

[Var{SLALE}]m =
n-1 moT
2 p n - [t 0 t
o |1 + —— S, cos(2r——) Exp{2nim=)
y+02+—g~p t=-{n-1) " n n
n'oz m#m. Or n-m (5-23A)
s 0 0
2 7 ESNR
nuo (1 + o ) m=my Or n-mg . (5-238)
1 + ‘2- ESNR

For the design of the APS3, Eqs. 5-23A and 5-23B can be reduced to one

simple design rule:

mio? < Var{S , .} < 2nug® . (5-24)

LALE

In summary, we have found that if the input could be modeled as a
sum of sinusoids in white noise then the LALE-DFT spectrum has the same

shape as the ideal power spectrum, but that the power estimate is
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biased (Eq. 5-15). Furthermore, we have shown that the variance of the
spectral estimate can be bounded by a simple expression (Eq. 5-24). In
the next section we will use these results to show that the LALE-DFT
power spectrum, in conjunction with a hysteresis threshold device, fits
the power switching requirements of both gain tolerance schemes that

viere presented in Chapter 2.

How the LALE-DFT fits the gain tolerance schemes

In this section we will show how the LALE-DFT power spectral
estimate can be used in the APS3, and how the APS3 will méet'the switch-
ing requirements of both gain tolerance schemes. This is an importnat
step tovards a useful aqaptive power separator.

. Both gain tolerance schemes have two power thresholds, P and p,-

A switching device fhgt obeys the to]erance schemes should indicate
"pass" if the input signal power is less than py> "stop" if the signal
power js greater than Py and either “"pass" or "stop" otherwise. From
Eq. 5-10 we find that the amplitude of the LALE-DFT spectrum is a
monotonic function of the input signal power. Thus a unique spectrum
amplitude is associated with each input power. Assume that an amplitude

threshold a, js found (using Eq. 5-18) which corresponds to an input

(Py+p,)
power of —-]2 2 Then if the amplitude of the LALE-DFT spectrum is
(p]+p2) .
greater than a, the input power must be greater than — - Thus if
n threshold devices with equations:
R AY
_ "stop" if input > a,
output = ' (5-25)
"pass" if input < a,
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are used on the output of the LALE-DFT they will indicate which

frequencies should be passed and which should be stopped. )
Noise in the spectral estimate will adversely affect the threshold

devices. For example, becausz of noise the amplitude of the spectral

estimate may be less than 2, even though the signal power is greater

(py+p,) o
— This will cause the threshold device to output a “pass'

than
when it should indicate "stop." Thus with a noisy spectral estimate
there is a possibility of a false output from the threshold devices.
Since the statistics of the spectral noise are known, these effects can
be quantified.
In accordance with the gain tolerance schemes, we say there is an

error (false output) when the threshold devices indicate "pass" even
though the input povwier is greater than p, or when the thresholc devices

indicate "stop” even though the input power is less than Py- The proba-

bility of an error is:
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Plerror} = P{(S p¢ > 2, and p<p,) or (S aLe <3¢ 8nd p 2 p))}
(e n(py+p,) np, )
= pY(S > and S < or
LALE  n(py+p,) + a(vso?) A Tnpl v 20w
- n(p;+p,) np,
(s < and S > )3
LALE n(p, +p,) + 3(y+a’) LALE np, + 2(y+0°)
2
os ‘ 2n(y+0”)(py-py)
- > or
ALE =
LALE  TLRLE ™ [n(p, +p,) + 4(y+0?)1Inp, +2(y+0%)]
2
- q -2n(y+0")(P,-p;) )
S - < ‘
LALE - TLALE [nlpy+p,) + 4(Y+02)]["P2+2(Y+02)]
2
(08 s | 2n(y+")(p,-py) . (5-26)
< P{S . 2" - 7 )
LALE -~ TLALED = [n(p 4p,) + 4(y+?)I[np,+2(ves ;]
Equation 5-26 is Chebyshev's inequality [Dud] so,
var{s }
P{error} i__*_z_l;f\ﬁ_ (5-27)
8
where
2n(y+0%) (p,-p;)
§ =
[n(p +p,) + 4(y+a?) lnp,+2(y+0°)]
From Eq. 5-24 Var{SLALE} < Znuoz'so:
62
Plerror} < 2nu =5 . (5-28)
8
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Thus, provided that Py # P,» the probability of an error is finite
and can be made as small as desired by making p small. Therefore the
LALE-DFT spectral estimator fits both tolerance schzmes in a probability
of an error have to be balanced against convergence time.

Earlier we discussed the possibility that a signal with power near
the threshold power could cause the output of the threshold devices to
repeatedly change state. This could be undesirable since it would
cause the APS3 to repeatedly redesign its bandstop filter which would,
in turn, modulate the signals that pags through the filter. A measure
of this.behavior is the expected design cycle time, where the desigﬁ
cycle time is the time it takes for the output of a thrashold device to
change state and then return to the original state. If the design cycle
time is large then £he filter is infrequently redesignad and will not
continually modulate the signals. Thus we will analyze the APS3 (

threshold devices to find the design cycle time Tc'

B i e

The output of a threshold device can be viewed as a Markov process.

The output has two states, "pass" and "stop," and for each input power
there are probabilities associated with each state. UYe define Pp as
the probability that the output is a "pass" and PS as the probability
that the output is a "stop." The state diagram for the threshold
device is shown in Figure 5-3. The expected design cycle time can be *

computed [Cin]:

E{time from pass to stop} + E{time from stop to pass}

E(T_)

- _P‘_ + T>L : (5-23)
p s
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Figure 5-3. State diegram of a simple threshold device.

P
pls

Figure 5-4. State diagram of a hysteresis threshold cevice.
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If the signal power is exactly the threshold power, P

p = Ps = 0.5, and

S0 E{Tc} = 4 iterations. If this time is too short, a more complicated

threshold device will have to be used because there is no viay to control

P

P_ and Ps with a simple threshold device.

A threshold device with hysteresis will allow the designer to

control Pp and Ps. By making Ps or P

large as desired.

Ps and Pp we define;

o(k)

ar

3

p small, E{Tc} can be made as

To see how a hysteresis device provides control over

output of the threshold device at time k.

S

=

LALE

input to the threshold device

Tower threshold

higher threshold .

Using these definitions the law for the hysteresis threshold device is:

¢(k+1)

\

( Ilpassll

Itpassll

“StOp"

\ llstopll

i La,
ap < ic a, and o(k) = "pass"
(5-30)
a, < i
3, < i< ay and o{k) = “stop" .

The probabilities of changing state are conditioned on the current

state, o¢(k):
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Pojp = Plolk#l) = "stop™[olk) = “pass"} = Pli2a}
Pplp = P{6(k+1) = "pass”|a{k) = "pass"} = Pli<a,)
Psls = P{¢(k+1) = "stop"|e(k) = “"stop"} = Pli>a;}
Ppls = P{o(k+1) = "pass"|¢(k) = "stop”} ; P{ifp]} . (5-31)

The state diagram for the hysteresis device is shown in Figure 5-4.

For this device the expected cycle time is:

1 1
E(T.} = + . (5-32)
C PSlp FPIS

THEOREM 5-1:" If a, # a, then E{Tc} can be made as large as desired.

p pls can be made as small as desired then

PROOF: If either PSI or P
E{TC} can be made as large as desired, so we will :how that either

P or P ls can be made as small as desired.

sip P

Let 6 = Max(E{i}-az,ah-E{i}). Assume for convenience that

§ = E{i}~a£. then:

P P{igpz}

slp

"

P{E(i}-1>8}

P{[i-E{i}|>5}

IA

) Var(SLALE}
< “‘“Ef“—“ .

Equation 5-24 shows that Var{SLALE} can be made as small as

desired by making the value of u small. Therefore Ps[p can be
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made as small as desired, and consequently E{Tc} can be as large (

as desired since:

]
E{T}25—+1 .

slp

An analagous demonstrations can be used to show that P can be

pls
made as small as desired by defining & = a, - E{i}.
This completes the proof of theorem 5-1,

The expected design cycle time can be bounded using the same type
of arguments that were presented in the proof of theorem 5-1. A lower
bound on E{T } is:

ah - aL

~

ZVAR{SLALE}

{v

E{Tc}

a, - a
-“———{L (5-33)
4nuo

v

When a hysteresis device is used in the APS3, the probability of

an incorrect state or error is:

P{error} < P{(igph and p<p,) or (i<a, and p>p2)}

IA

P{li-E{i}lgﬂin(ah-amin. ‘max'al)}

Var{g }

< = _ i
. Min(ay-a ., amax'at)-

A
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where |
(

min T n. 2

max

Since VAR{SLALE} can be made as small as desired, the probability

Sty

of an error can be made as small as desired. Therefore, by using 4

threshold devices with hysteresis the switching characteristics of the

[ ]
1 .

APS3 will meet both gain tolerahce schemes and still have as long a

design cycle time as desired.

Wovans §
’

Frequency sampling filter design ,

m«.
L] L
Vd

In the previous sections we have analyzed the power spectral

Wornio.

estimation technique used by the APS3. We have shown that the DFT of
the LALE weight vector in conjunction with hysteresis threshold devices
can indicate with any desired accuracy which frequencies should be

blocked and which should be passed. In the following section we will

show that the frequency sampling filter design technique can use the

‘ ] output of the threshold devices to design a filter that will block, to
any desired accuracy, the high power signals and pass, with nearly unit
gain, the low power signals.

h One technique for designing finite impulse response (FIR) filters
is the frequency sampling technique [Opp, Rab, Rab2]. Frequency sampl-

ing uses an inverse DFT to obtain a weight vector from samples of the

fdeal frequency response. This technique is fast, computationally

| ) %

- - ’ R
e tn 43 = o e s e e -




efficient and not iterative. Since the APS3 will be a real-time signal (i
processor speed is important. Also, frequency sampling can be used to

design filters with linear phase which may be desirable in communication
systems. Therefore the frequency sampling technique is used in the APS3

to design the bandstop filter that rejects the strong input signals.

In the APS3 the ideal frequency response is der}ved from the DFT

of the LALE weight vector n threshold devices process the outputs of an
n point DFT to produce samples of the ideal frequency response. The
i ' frequency sampling technique uses the following equation (inverse DFT)

to obtain a weight vector from the sampled frequency response:

.- n-1 ,
. Wy = f?o etz & i =0,1, L 01 (5-35)
! where ('
%
. W = the weight vector of the FIR filter 4
j = the pulse response of the FIR filter
| H = the vector of gain specifications !
{ = samples of the ideal frequency response i
[ [H]L = jdeal gain at frequency ﬁ%
{ n = number of weights in FIR filter i
{ ) = pumber of frequency samples E
T = sampling period of FIR filter .

L Y
{ Since we stipulate that W must be real, the following symmetry '
{ condition has to be imposed on H:

[ [HJZ = Conjugate{[H]n_L} . (5-36) (




The transfer function of an FIR filter designed by Eq. 5-35 is [Opp]:

"] [H3,

L -] - (5'37)
=0 1 - Exp(jZﬂK)Z

n

1-7"

H(Z) T e——
n L

The frequency response of the FIR filter is found by substituting

Z = Exp{jw) into Eq. 5-37:

sin(g(m-zn-ﬁ-u

n-1
Helo) = f Expl-dut5h) 35 () D] Exmlsn) (5-38)

sin[-;-(m-zu§)]

substituting w = w% into Eq. 5-38 shows that:

- A

e

JT=.
W ™| = Ml £=0,1, ...n1 L.

Thus the gain of the FIR filter has the correct magnitude at the sample
frequencies (integer multiples of ﬁf). What about the phase? Eq. 5-37

shows that the frequency response consists of a linear phase term,
Exp(-jwﬂ%l). and a complex term. One of the design requirements is

that the FIR filter have linear phase. This will be true if the complex
term is purely real which requires that:

(Hl, = [e], e (5-39)

ST

S where [GJL is a real value, the magnitude of the ideal frequency

response. Also, since H has to obey Eq. 5-36:

‘61, = -l6],_, - (5-40)
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If H has the form specified in Eqs. 5-39 and 5-40, then the FIR filter
will have a real weight vector, linear phase and the same magnitude as
the ideal f11ter at the specification frequencies (integer multiples of

gf Hz). However, there will be zeros in any passband, as can be seen

by rewriting Eq. 5-38 as:

o n“ n" > n L -
. Sin{s{w-2n=
e = e 2T e, el s
. nSi n[i(m-ZwH) ]

This shows that the magnitude of H(Z) is the sum of n bandpass filters.
The peak amplitude of the filters is {G]z at frequency n%. In a pass-
band, where [G]Zr] = [GJL = 1, the sign alternations in H(eY%) caused
by_the term (-I)L will cause the gain to be zero somewhere between
frequency £_: and ‘ﬁu This follows from the intermediate value theorem

[Ros]. Since this behavior is undesirable, an additional condition is

imposed:
£
[61,(-1)" 20 . (5-42)

With the added restriction of Eq. 5-42 the magnitude of H(Z) will
approximate quite closely the magnitude of the ideal frequency response.
Figure 5-5 shows the magnitude of K(Z) for a typical bandstop filter
designed by frequency sampling. The frequency response has ripples

which increase in magnitude near discontinuities in the derivative of

* the ideal frequency response.

The magnitude of the ripples in the actual frequency response can

be reduced by smoothing the ideal frequency response. A common technique
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for smoothing the ideal response is to vary a few of the ideal gains

near a discontinuity. Usually the gains are varied until the ripple is
minimized (Opp, Rab, Rab2]. This procedure is complicated and may be
too slow for real-time filter design. Thus the APS3 uses fixed smooth-
ing of the ideal filter characteristic. Wherever there is a transition
from a desired gain of one to a desired gain of zero, the APS3 will
alter the gain of one to a gain of 0.4 (0.4 was chosen by examining a’
table of optimal values [Rab2] and selecting a compromise value).

Some reduction in the complexity of the APS3 can be obtained by

using the symmetry of Eqs. 5-39 and 5-40 and the fact that:

if
W = inverse DFT(H) (5-433)
then
W™ = inverse DFT(H') (5-433)
vhere
W3 = (W] ]
i+3 mod n
Wl - (v -

Figure 5-6 shows a block diagram for one possible implementation of the
filter design portion of the APS3. Notice how symmetry eliminates the
~need for half of the threshold devices and half of the smoothers. Also,

the symmetry conditions required for linear phase dictate that the n/2

input.must be zero since [G]n = -[G]n from Eq. 5-40. Finally, the
2 2




ERM R Ve S -

*CSdY 43 v u6ysOp Ja3(14  *9-§ aanbyy

22 2 ? 2 saybyan
l 2- . Lo 49}
FOT! EOTL & I 0 “x) "8 {poamits
140 3S¥3AN]
S ,, )
1
. c.u L M ”
e l lu. -
_ w
} |
' JIy100u5 L Jayy00us J9y100us !
1o
o .
v/ upy
40 U)) /Ui J) 90 « 3NO
LeWIeUeujl §3 | =300 .
0eV) 5 0aano T O .
Ploys Iyl PLOYSIIN pLOusSI)
¥IHLCOUS
| ] !
I _ { t-Luig Lug Cuq
vig iy W \
<
. 403224 3461aA JIV 4O 140 JO S3ndang
*
. ] »

P—y




output of the inverse DFT is ‘rotated', which by Eqs. 5-43A end B has

the same effect as Eq. 5-42.

This completes phe derivation of the frequency sampling technique
for filter design. In the next section we will show that the frequency
response of filters designed by the APS3 can be made as nearly ideal

as desired.

Quality of frequency sampling designed filters

The quality of a filter can be defined in many ways. One measure
of the quality of a filter is defined as the integral of the square of
the difference between the ideal transfer function and the actual
transfer function. The following theorem uses the inteagral squared

error [Trt, Oga) criterium to characterize a frequency sampling filter.

THEOREM 5-2: The integral squared error between the transfer function
of a filter designed by frequency sampling and the ideal transfter
function can be reduced to any desired value by making the filter

length large enough.
A useful corollary to Theorem 5-2 is:

COROLLARY 5-2: Given a signal with a finite power spectral density
and a frequency sampling designed FIR filter, the output power due to
the difference between the actual transfer function and the ideal

transfer function can be made as small as desired.
. .

Before we prove Theorem 5-2 we will prove two Temmas.
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LEXMA 1: The impulse response of a freguency sampling designed FIR
filter is an aliased or folded version of the impulse response of the

ideal filter [Rabz].
PROOF: (The technique used in this proof is due to Papoulis [Pap].)

The transfer function H{w), of a digital filter is periodic with a
period of %. This implies that H(w) can be expandad in a Fourier
series:

Hlw) = 2 ¢, Exp(-327KTw)

where the c, are the Fourier coefficients and also the pulse response
of the ideal filter.
Frequency sampling uses samples of the ideal transfer function.

Let n be an arbitrary integer and define:

o, = -
1 nT
then the samples of the ideal transfer function used by frequency
sampling are:

H(mm]) m=0,1, ..., n-1 .

In terms of the Fourier coefficients these samples are:

Hims) = 2o cyExp(-j2mkTmu)
= _39-M = _
‘ - ‘z::m cExpl-j2nkD)  m=0,1, ..nl .
104
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Note that k can be written as:

k = i+rn for i=:2.'1, g-m and r cees =1, 0,1, ...

50

EXP[-jZﬂng = Exp[-jZn(i+rn)%] = Exp[-jZni%ﬂ

since .
Exp(j2n] = 1 .
Therefore,
% n
. 51
- W) = 3 il m.
_ H(me, ) .an ,.%f,,ci‘rmsxp[ jen(i+rn);)
L ]:T
n
. ?’] . (
. PIRLIED Y
- .Ezn EXP['JZ"]n] reow Citrn
1="2~
LU
2
. s M
= 2« iExp[-JZm-ﬁ-]
i=3)
2
where
- = -——n- i ‘n--
. € ;Z;m Ci+rn 2 2127 ! *

This equation for H(Mw]) is the DFT of the sequence c’i. Thus

the weight coefficients or pulse response derived by the frequency
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sampling technique are the c'i which are "aliased" Fourier series

R coefficients. QcD . (

LEMMA 2: Given a sequence c, of Fourier coefficients and an arbitrary

number, €, then a value of n can be found such that if m > n then

I:
. g -1 2
c. € . .
| i=_'.".‘l IrPO ]+rn‘ .
f 5 ";
PROOF: By a form of Parseval's theorem [Trt] i?
R
g
1 |
= 2 12T 2 }?
> lel? - L (a2 = a }
e a

where
Hi(w) is the ideal frequency response

a is some constant

106

|
|
l




) °‘|Zm'°k'z

k‘<-2'

(- -]
since E: [ck(2 is a convergent series [Ros] there must exist, for any

EEN.-

arbitrary ¢, some n such that

2
a - anckl <€
[ki<z

which implies that

n
3-1

! ) Z ! E ck+rn
[r{>0

=n
k=§—

2
<e




PROOF of THEOREM 5-2: the intagral squared error is defined as:

X

27
2 2
e? - TLlHi(m)—Ha(w)l do

N

where

Hi(w) is the ideal .transfer function

Ha(w) is the actual transfer function

also, if the ¢ are the Fourier series coefficients of Hi(”)' then

. & -1 @
Hi(w) - Ha(w) = ,:_.L?w ckExp[—jwkT] - %—Jn rg}m ck+mlExp[-J’wkT]
k=
by LEHMA 1.
Parseval's theorem [Trt] is:

N
2T ® »
1 2

Homwfe < T gl
-1 .
27

where the ¢, are the Fourier series coefficients of Hi(w) SO
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A 71 7

1 2 2
= TI [H; (w)] 0w + DI IR ck+rn!z

-) d LI k=—D r|>0
37 2 2

Given an arbitrary € there exists an n, such that if m > ny then

1 m
27 -1 .
3'—. lH\.(w)]zdw - ) lck] <§-
-l k=
2T
also, by LEMMA 2 an n, can be found such that ifm> n, then
m
= -1
2 2 €
E ' Z Ck+rnl < 2
k-_-:.’ﬂ ‘rl>0
2
A\
thus if n = MAX(nI,nZ) then for any m > 0
2 (£,E 2
et <ytz T F

QeD
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PROOF of COROLLARY to THEQOREM 5-2: The error output power is:

where
S{w)
Se(w)
Therefore,
where
v =
e2 =

1
77

S (w)ds = JE 1£(w) 125 (w) do
il |

m’o
"
)

Power Spectral Density of input signal

-~

Power Spectral Density of signal which is due

to the error between the ideal filter and the

actual filter .

VIE(w) [2de = Ve

m‘U
IA
Nl

Max[S{w))
integral squared error between the ideal and actual
transfer function, e2 can be made as small as

desired (Theorem 5-2)

this completes the proof.

L3

NOTE: A signal with zero bandwidth, such as a sinusoid, does not

have a finite power spectral density. Consequently this proof does not

hold for sinusoids. However, it is conjectured that Gibbs phenomena
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[Car] may appear at discontinuities in the transfer function. So if
the input has a sinusoid at the frequency of a discontinuity, then the
Gibbs phenomenon will cause the error power to be finite for all
values of n.

Theorem 5-2 supports the intuitive notion that increasing the
number of weights in an FIR filter should allow the transfer function
to become closer to the ideal transfer function. The corollary Tets Us
know that in principle frequency sampling filters can attenuate any
finite bandwidth signal to any desired level. This means that the
filters des;gned by the APS3 fit gain tolerance schems one. (In
practice this may not be true due to problems such as finite precision
arithmetic).

Figures 5-7 through 5-10 show a series of frequency sampling
designed bandstop filters. All of the filters have a stopband between
12.5% and 25% of the Nyquist frequency. The transition gains, which
are at 12.5% and 25% of the lyquist frequency, are 0.4. Figure 5-7
shows the frequency response of a 32 weight filter. Figures 5-8, 5-9
and 5-10 show the frequency response of a 64 weight filter, a 128 weight
filter and a 256 weight filter respectively. The improvement in the

frequency response is evident,

Summary and conclusions

This chapter has presented a scheme for an adaptive power separator
which is based on a LALE, a OFT and an iaverse DFT. We have shown that
the adaptive power separator, called the APS3, fits tolerance scheme one.
This means that the deéigner can select two power thresholds, P and Py
(with'p) < p2) and guarantee that all signals with power less than N

will be passed and all signals with power greater than Py will be

m
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stopped. In the.context of the APS3, and gain tolerance scheme one,
the signals that are stopped will be multiplied by some gain g which

is between zero and some arbitrarily small value 62 which is selected

by the designer.
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6 -- APS4: THE ADDITION OF NOISE CANCELLING 70 THE APS3

This chapter proposes and examines an adaptive power separator
(APS) which uses an adaptive noise canceller to improve the performance
of the APS3. The new APS has more components than the APS3, but the
performance fits tolerance scheme two. Because of the significant
improvement in performance, the new APS is called the APS4 to distin-
quish it from the APS3.

The previously explained APS, the APS3, designs a bandsiop filter
that will reject the strong signals. However, the bandstop filter is
not perfect, so a small fraction of the strong signal may still be in ) X

the output of the APS3. Consequently, if the strong signal is powerful fi

3 enough the output power can be very large. We would like to find a ) (
scheme for cancelling the residues of strong signals.
Noise cancelling is a common application for adaptive filters
[Wid, Glo]. The usual situation for noise cancelling is shown in
Figure 6-1. The adaptive filter forms a best fit between the noise
signal at the reference input and the noise in the primary input. Thus

the output consists of the signal and whatever noise the filter could

not match. In the case of the APS4, the primary input to the canceller

R

is the output of the APS3, and the reference input to the canceller is
the output of a bandpass filter which passes only the strong signals.
Figure 6-2 shows the structure of the APS4. The LALE end the

' bandstop filter form the APS3. The new bandpass FIR filter, which has

pass regions wherever the bandstop filter has rejection regions

i' n7
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{see Fig. 6-3), passes only the strong signals. The strong signals are
used as the reference input to a leaky LMS canceller which cancels the
residues of the strong signals from the APS3 output. (An LLMS canceller
is used because greatly attenuated versions of the weak signals will
pass through the bandpass filter (due to ripple), and an LMS filter
would use these to cancel the weak signals in the APS3 ocutput.) The
output of the noise canceller is the output of the APS4. -

The bandpass filter used in the APS4 is the complement‘of the
bandstop filter which is used in the APS3. A simple way to design the
bandpass filter is to use the frequency sampling technique. The ideal
transfer function is derived from the ideal transfer fucntion of the
bandstop filter by replacing all gains of zero by gains of one and all
gains of one by gains of'zero. The result%ng bandpass filter (see
Fig. 6-3) will pass all of the signals which the bandstop filter
rejects -- these are the strong signals.

The analysis of the noise cancelling stage divides into two cases.
The first case is the analysis of weak signals and the second case is
the analysis of strong signals.

If a signal is weak then the bandstop filter will pass the signal
with a gain of nearly one, and the bandpass filter will pass the signal
with a gain of nearly zero. We will denote the gain of the bandstop
filter at the signal’'s frequency as 1-f] and the gain of the bandpass
filter at the signal’s frequency 9y Figure 6-4 shows the canceller in

this situation. The signal power at the "error" output is:

power < 02 + ('l—f]-g]g)zps {6-1)
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Bandstop filter designed by the APS4
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Figure 6-3.

Bandpass filter designed by the APS4 to derive a
reference input for cancelling strong signals.
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where

g is the gain of the LLMS filter at the weak

signal's frequency

o is the noise power in the APS input (we fgnore
any power reduction due to notches and ripples
in the bandstop filter, also we ignore the noise

passing through the bandpass filter)

Pg is the power of the weak signal . : |

The LLMS algorithm acts as if there were white noise with power Y,

‘ added to the reference input. Thus the LLMS filter minimizes the

effective "error" power which is given by:

effective error power = 02 + (]-fl-g]g)zps + 7292 %. (6-2) (
2

where

the numBer of weights in the LLMS filter

i
|
n2 = j
i
yzgz %- = the noise power which the LLMS filter believes |
2 |
is passing through it j
Y, = @ parameter of the LALE ﬂ
i

= power of "algorithmic noise" ‘

The value of g which minimizes the effective "error” power is:

p
(1-f,)g, ==
19y, (£ )g SR

g* = (6"3) (’
o5, 2 gesmael
Ty, ny, na
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where
(

ESHR

Y2

= effective signal to noise ratio .

The gain for the weak signal from the primary input to the "error”

output is:

2

: : 2

g = (1-f) - g,9* = TS . (6-4)
e L glEshR + 2
N2

This.is the gain which will apply to a weak signal in the APS4.

If a signal is strong, then the bandstop filter will reject the
signal with a gain of nearly z2ero, and the bandpass filter will pass
the signal with a gain of nearly one. We will denote the gain of the
bandstop filter as f2 and the gain of the bandpass filter as 1 - 9,- r
The analysis parallels the analysis in the weak signal case and we !

find that the gain which applies to the strong signal is:

2
fiﬁé ‘

. 9, = . (6-5)
- e (1-92)255NR + Fzg

The reason for adding the canceller to the APS3 was to 1imit the

¢ output power due to strong input signals. Theorem 6 shows that this ]

is possible,
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n
THEOREM 6: If Y, g_pt(l-gz)z 1;, then the output power due to a signal

with power p > Py will be less than or equal to the output power due to
a signal with power Pes vhere Py is the threshold power of the APS3, 9,
is the passband ripple in the bandpass filter and n, is the length of
the LLMS filter.

PROOF: The gain of the APS4 is:

2
f, — .
) 2 "2
2 )
(1-g,)¢ £ + £
2"y, M,

for signals whose power, p, is greater than or equal to the threshold
power p,.

The output power due to strong Signals is therefore:

fz[z]z
2in
2 2

P = gp -
out 2p .2 2
(]"‘92) Y + n.
2 2

The slope of the output power with respect to the input power is:

p .

2

. ‘ 2
£ _z_J [(,_g 2 .Ej _ zfz[_;]"’p Q-5,)"
WPout . 2" R I \F:

2p 25 . 2]
{(1-92) Y, " ﬁ;]

Since p, nz.and Y, are greater than zero, the slope of the power-out

versus power-in curve will be negative if:
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Thus the slope of the power-out versus powar-in curve is negative if:

Y2
p > 3 .
-n 2
2("92)
This is the condition that makes the theorem true. For if the power-
out versus power-in curve has a negative slope then an increase in
input power will cause a decrease in output power. Thus the theorem
requires that the slope of the power-out versus power-in curve be
negative for all powers p > Py This implies that:
Y2
P 27T 5

2
= Yo hy pt(]‘gz) 7 .

This demonstrates that the condition:

2 ™
)" =

is sufficient to guarantee that any signal with power p > Py will have

less output power than a signal with power Py+
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QED
As the power of a weak signal increases the gain of the APS4
decreases. The gain variation for weak signals is minimized if Y,

is maximized. Since the APS4 should have a minimum gain variation for

weak signals, the best choice of Y, is:

. 22 ]
YZ = pt(]‘gz) 2 (6 6)

since this is the largest possible value for Y, that will still
guarantee, by Theorem 6, that the output power due to strong signals

will decrease as the input power increases. By using this value for

Y, ve find that the minimum gain for weak signals is:

(1-f,) fl .
2
2 = ‘ - p] (6—7)
g |
S,z
Yt n
which implies that
o? + £,(1-g,)?
D] = (6"8)

gf + (1-92)2
where
N is the gain deviation in the weak signal region
(see Eq. 3-2, the definition of tolerance scheme two)
9 is the stopband ripple of the bandpass filter
9, js the passband ripple of the Bandpass filter

fy is the passband ripple of the bandstop filter .

127




(»; Since 9 9; and f, can be made as small as desired (Theorem 5-2), (
P can be made as small as desired, thus the APS4 meets the gain speci-
fications of tolerance scheme 2 (Eq. 3-2) in the weak signal region.

The maximum gain for strong signals is:

fa
-2" = pz (6-9)
f where
|
5 pgpt is the maximum allowed output power due to :
E e
a strong signal (see the definition of |
tolerance scheme two, Chapter 3)
f2 is the stopband ripple for the bandstop filter . {;
' . |
P |
? {__ Since f2 can be made as small as desired (Theorem 5-2), p, can be made Z :~

as small as desired, thus the APS4 meets the gain specifications of | i

tolerance scheme 2 in the strong signal region.

The switching.characteristics of the APS4 are controlled by

the APS3 part of the APS4. Since the switching characteristic of the
APS3 with hysteresis devices fits tolerance scheme two, the switching
characteristics of the APS4 also fits tolerance scheme two. Since the

' gain characteristics of the APS4 filters fit tolerance scheme two, the

APS4 fits tolerance scheme two. Thus, any desired quality of adaptive
} ' power separator, as measured by tolerance scheme two, can be implement-

i ed with the APS4.

AN
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. 3 Summary and Conclusions (

- This chapter has presented the APS4, which consists of the APS3
with an adaptive noise cancelling stage. The APS4 uses rmore computa-
tions than the APS3, but the gain characteristic of the APS4 fits
tolerance scheme two. Because the APS4 controls output power, rather
than gain, it is suited to applications where the power of tﬁe strong
signals can be many times larger than the threshold power. For this -
i reason, the APS4 is the best of the adaptive power separators ¥

discussed in this work. . ‘

m e e e s e
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7 -- SYNTHESIS OF AN APS

In this chapter we show how to design an APS given a problem
specification. The problem to be solved is: design a system that will
reject jamming signals and pass communication signais given a received
signal that consists of narrowband communicat%ons signals with powers
between 0.1 and 2.0, narrowband jammers with power greater than 3.0,
and white noise with power 0.5. Conventional filters cannot be used
because the frequencies of the various signals are unknown, and the
LALE cannot be used because it cannot suppress the jammers without also
suppressing the communication signals.

Because the problem definition is incomplete, we have to make
several assumptions. First, we assume that the jammer powers are less
than 20 and design the APS3 accordingly. Second, we assume that the
jammer powers at the output of the APS should be less than 0.01. Third,
we assume that there will be at most 20 signals at any time and that
the frequencies of the signals are between 2 MHz and 8 lMHz. Finally,
we assume that the jemmer powars can be as large as 20 000 and show how
to design an APS4 to accommodate this case.

The design of the adaptive power separator consists of a number
of steps:

1) Selection of n, the number of LALE weights.

Since an n weight LALE can handle up to n/2 sinusoids, n must be
greater than 40. Also, the FFT, which is an efficient implementa-

tion of the DFT, requires that n be an integral power of 2, so n

is chosen to be 64.

Y
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(,_ 2) Selection of T, the sampling period. (

- The LALE will give good spectral estimates only if the frequencies
of all the signals are between 20% and 80% of the HNyquist
, frequency. Thus T has to be 50nS (2‘—0 MHz). The sampling rate, in

conjunction with the number of LALE weights, determines the bin

. width of the LALE (313 kHz). Any signal with bandwidth less than

s

a tenth the bin width can be reasonably approximated as a sinusofd,

so the APS will treat all signals with bandwidth less than 30 kHz

as narrowband signals and behave as predicted. Signals with wide

bandwidth cause unpredictable operation of the APS.

3) Selection of v, the "algorithmic noise" power.

The gain of the LALE is related to v, the sum of the true noise

- ) power and the signal power. To prevent the spectral sidelobes of B

Fan

powerful signals from causing errors requires that a large LALE
gain correspond to a signal at the threshold power. However, fgr .
good switching performance the gain should have a high sensitivity

- to power changes, which implies that a small LALE gain correspond

. to the threshold power. Accordingly, a compromise is reached by

choosing a LALE gain of 0.5 to correspond to the threshold power.

For simplicity the threshold power is taken to be Py = 2.5 (the

average of the maximum signal power and the minimum jammer power).

§ - 3

Using this information we can solve for y:




[

4)

0.5

"

gain at the threshold power

i
:
Q

= y = 79.5 -. (7-1)

Selectipn of n”, the length of the FIR filter.

Selection of n” controls the maximum gain in the stopband of the
FIR filter and aiso the quality of the power spectral estimate.
The APS3 uses the LALE gain as a power spectral estimate. However,
the APS3 uses a finite length DFT to determine the gein of the
LALE. The outputs of the DFT are samples of the LALE gain, and
these samples may not coincide with the peaks in the LALE gain
that are caused by signals. 1If the DFT samples bracket a peak,
then the APS3 will act as if there are two smaller signals. This
effect is a combination of leakage and the “picket-fence" effect
[Ber]. The picket-fence effect is caused by the gain characteris-
tics of the bank of bandpass filters that constitute the DFT

(see Chapter 4, Eq. 4-2). If the signal is on-bin, the bandpass
filter passes it with a gain of one, but if the signal is between
bins then the gain of the bandpass filter is 0.64. The LALE gain
can be sampled more frequently if the LALE weight vector is padded

with n”-n zeros and an n -point DFT is used to evaluate the
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gain [Ber]. This technique of "zero-filling" reduces the picket-

fence effect. The minimum gain for an n~ point DFT of ar n weight

.. Sin
LALE is ——;§§l where x = —gj . Thus if a signal is present that
2—
n

causes the LALE gain to peak with a value g, as n” point DFT will

return a peak value between g and 2n° g. To find tne

nu
minimum allowable DFT gain we first determine that the peak gain
of the LALE for a communication signal with power 2.0 (largest
power to keép) is 0.444, and that the peak gain for a jarmer of
power 3.0 (smallest power to discard) is 0.545. Since
0.444 = 0.80 x 0.545, the minimum gain of the DFT must te greater
than 0.80 to avoid confusing weak jammers with strong communication
signals. From Table 7-1 we select n” = 4r because the extra gain
gives us room for a large deadband in the hysteresis threshold
device (which will reduce the error rate).

The other constraint was that the FIR filter have a low
enough maximum stopband gain. It turns out that a 4n FIR filter
has a maximum stopband gain of about -35 dB, and the requirement
is for a maximum stopband gain of gﬁg%-= 5 x ]0-4 or -33 dB. Thus

the 4n filter fits all of the constraints, so n” is chosan to be

256.

Setection of a, and s the low threshold and high threshold of

the hysteresis device.

Once the minimum DOFT gain has been determined it is passible to

find the minimum OFT output amplitude that corresponds to a

Jjammer:
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Minimum DFT Gain

0.6366
0.9003
0.9745
0.9936
0.9984
0.9996
0.9999

Table 7-T.
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6)

Min[DFT gain] x LALE gain for weakest jammer

H1n[aj]

0.53) .
Also, the maximum DFT output due to a communication signal is:
Max[aS] = 0.444 .

In the absence of other information it seems reasonable to select
the two threshold values as 1/4 of the difference between

Min[éj] and Max[és] (see Fig. 7-1):

f

ap 0.466

1t

a 0.509 .
Selection of p.

From Eq. 5-34 the probability of error for the threshold device

is:
VARS, ,. o}
Plerror} = — LALE_ 5 (7-2)
M1n{ah-Max[aS], Mtn[aj]-az}
From Eq. 5-24, VAR{gLALE} < Znucz, so Eq. 7-2 becomes:
Plerror} <7 600n . (7-3)
1f we want P{error} < 1%, then:
-6
p<1.3x10 . (7-4)

This value of 1 also guarantees the stability of the adaptive

process.
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Another constraint on u is the expected design cycle time. (’

Using Eq. 5-33, we can find E{Tc} > 2 500, which is acceptable.
If the expected design cycle time was unacceptable, u would have

to be reduced.

This completes the design of the APS3. The design parameters for the
APS3 are summarized in Table 7-2.

Now assume that the jammer powers can range from 3 to 29 000. I;
this case the APS3 will not be sufficient to reject the jammers because

5 ‘the stopband ripple is too large. To obtain the desired performance

we wil) add a noise cancelling stage to the APS3 and thus design an

APS4. The APS3 portion of the APS4 will have the same parameters as in

7 to guarantee that the small

Aomcmme 3

Table 7-2, except that p will be 1.5 x 107
p assumptions used in the analysis of the LALE remain valid (this u is
a tenth of the stability limit). The LLMS filter used for noise cancell-

ing will have as many weights as the LALE (i.e. 64), and a2 u of
7

T e e e e

1.5 x 1077, v, is computed from Eq. 6-6 to be 96.

This completes the design of the APS4.

Simulations of the APS3 and APS4

Both the APS3 and the APS4 were simulated on a digital computer.

e cm et L L

) Figures 7-2 through 7-5 show characteristic curves of both power
separators for a single sinusoidal input. Figure 7-2 shows autput-
power versus input-power as the input power ranges from 0.1 to 10 000,
and Fig. 7-3 gives an expanded view of the transition region. Figure :

7-4 shows gain versus input-power as the input power ranges between

- 0.1 and 10 000, and Fig. 7-5 gives an expanded view of the transition i

region,
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; i s
i : number of LALE weights n = 64 . v,
’ equivalent LALE noise power _ vy = 79.5
: 4
‘ adaption constant _ p o= 1.3 x 1078 ;
Tow amplitude threshold a, = 0.466 1
. high amplitude threshold a, = 0.509 'j
1
. number of FIR Filter weights n® = 256 B
- sampling frequency f's = 20 MRz ‘
é’ 4
i . Table 7-2. Parameters of the APS3.
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Figures 7-2 and 7-3 show how well the APS4 contrcls thas output
power. Also, the sharp threshold is evident, a; well as the fact that
the APS4 easily meets the design goals. From Fig. 7-3 it is possible
to determine that the APS3 meets the design goals over the limited
power range that was assumed for the design of the APS3. (The frequency
of the sinusoid used to test the power separators was chosen to give
the poorest possible results; at other frequencies the output power and
filter gain would have been lower for powerful signals.)

For comparison, Fig. 7-6 shows a gain versus input-power curve for
a LALE power separator (APS1). The LALE was designed to havs a thrésho]d
power of 2.5 which gives the best possible signal to jammer enhancement.
This figure shows the very slow transition from high gain to low gain
that is characteristic of the LALE.

Figures 7-7A and 7-78 show the results of simulating thz APS3 with
many input sinusoids. In this example there are 10 input sinusoids.
Table 7-3 lists the power and frequency of these sinusoids. Figure 7-7A
shows a theoretical power spectrum of the input signal and Fig. 7-78
shows a theoretical power spectrum of the output signal. These power
spectra are computed from the power of the true input noise, the power
of the sinusoids and the gain of the APS3. Figure 7-7B shows that the
APS3 has deleted the signals with power 3 or more, and has left
unaffected the signals with power 2 or less. Table 7-3 also lists the
output powers at the signal frequencies to show the exact effacts of the

+APS3.

Simulations have also been used to determine the frequency

resolution of the APS3; It has been determined that a jammer that is
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Frequency

(% of Nygquist) Input power Output power
12.5 2.0 2.00
16.5 3.0 0.00065
20.5 2.0 1.98
28.0 3.0 0.00029
32.0 2.0 2.00
36.0 3.0 0.00014
40.0 2.0 2.06
44.0 3.0 0.05098
48.0 2.0 2.04
55.6 3.0 0.00038

Table 7-3
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L
‘ within one “bin width" (i.e. a frequency of #T) of a signal can cause (
L * -
the APS3 to erroneously delete the signal. This is caused by a side-
- lobe of the power spectral estimate of the Jammer adding to the spectral

estimate of the weak signal and causing the total estimate to exceed the

threshold value. Thus for good performance of the APS3, the signals

should be separated by at least 1.5 bin widths (4.9% of the Myquist

frequency for a 64 weight APS).




8 -- SUMMARY AND CONCLUSIONS

This thesis has developed the concept of an adaptive power
separator and analyzed three implementations of a generic power
separator structure. A good example of an APS is the APS3. The APS3
uses a_ LALE to analyze the input signal, and a OFT of the LALE's weigﬁt
vector to produce a power spectral estimate. .The outputs of the DFT.
will be large at the frequencies where the input signals are strong,
and small elsewhere. The DFT outputs are passed through threshold
devices that have zero output whenever their input exceeds a predeter-
mined threshold and unit output otherwise. The outputs of the threshold
devices form a desired, or ideal, frequency response. A filter with
this frequency response would pass weak signals with unit gain and
reject strong signals with zero gain. This ideal frequancy response is
converted into a weight vector for a finite impulse response filter by
a design technique called frequency sampling. The frequency character-

istics of the resulting filter can be made as nearly ideal as required

" by appropriately selecting the length of the filter.

Since the LALE-DFT combination gives good spectral estimates, and
since the finite impulse response filter can be made nearly ideal, the
APS3 can be designed to have nearly ideal input-to-output characteris-
tics. However, there are other important measures of APS performance
such as response time or frequency resolution. Also, the analysis
assumed that the input to the APS consisted of a sum of narrowband

signals in white noise. This may accurately model many situations,
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such as rejection of CW jammers or interference from rotating machinery,

but simulations show that the APS3 and APS4 fail to function when the
» input consists of-a wideband signal in white noise. Thus the APS3 and
APS4 would provide no protection against wideband jammers.

A possible topic for future work would be the design of an APS
that could reject wideband signals as well as narrowband signals. Such
an APS might use one of the modern spectral estimation schemes, such as
maximum likelihood or maximum entropy, instead of the LALE-DFT combina- f}

tion that is used in the APS3 and APS4.
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